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Summary

The limits of production processes of composites are explored increasingly. A higher
performance and a higher quality are demanded at lower cost prices. Inevitably, a
thorough understanding of the processes occurring during the production is essential
to meet the imposed demands. The research presented here aims to increase the
fundamental knowledge on a crucial part of the Resin Transfer Moulding (RTM)
production technology: the impregnation behaviour of textile reinforcements. In
RTM, a near–net–shaped, dry, textile preform is manufactured and placed in a closely
fitting mould. Resin is subsequently injected, typically at a pressure varying between
2 and 10 bars relative to the atmospheric pressure. The textile reinforcement is
made of a fibre bundle structure, which can either be a preform made of (a stack of)
woven fabrics or Non–Crimp Fabrics (NCF), or be a preform manufactured employing
automated preforming technologies such as braiding and fibre placement technologies.
The work is performed in the first place as part of a joint research effort between the
National Aerospace Laboratories (NLR) and the University of Twente (UT). Secondly,
the research project was supported by the European project FALCOM. Finally, the
work was partly done in a Marie Curie Fellowship project at the KU Leuven. It
was recognised that a more fundamental level of knowledge was required to solve
production process related problems. The problems encountered comprised several
issues, including the textile preform manufacturing and the subsequent impregnation
behaviour using Resin Transfer Moulding technology (RTM).
The main problem in the application of the RTM process for structural and/or
complex shaped products – as is the aim of the NLR – is a proper prediction of the
permeability of the textile reinforcement. The attempts to define basic models with
which the permeability can be predicted have stranded so far. The significant amount
of variation in the measured permeability of comparable fabrics under comparable
circumstances hampers the further development of predictive models.
Here, a methodology is described to predict not just the averaged permeability value,
but also the possible variation due to variations in the internal geometry of the
preform. It is believed that the variations in the measured permeability are not solely
caused by experimental scatter, but are also caused by variations in the internal
structure of the material at a relatively small length scale (≈ 0.1mm).
The domain of this work is consequently linked to geometrical modelling and flow
modelling. The interaction between both is crucial. Moreover, there is also a twofold
pointing link with the field of textile forming: the effect of shear deformation – the
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ii Summary

main deformation mode – on the geometry and on the variations in the geometrical
structure, is also accounted for. It was recognised in earlier projects that the
material properties and deformation properties are interrelated. Consequently, the
link between the main deformation mode of textile preforms and the geometrical
model is considered to be relevant.
The preform material is limited to the class of Non–Crimp Fabrics (NCF). A layer
of this type of reinforcement consists of a number of plies of uni–directionally, but
mutually differently oriented fibre bundles, stitched together by a warp knitting
process. The stitch thread is small compared to the fabric and does not contribute
to the mechanical properties other than that it increases the shape integrity of the
material.
The geometrical model comprises of a description of the internal geometry of Non–
Crimp Fabrics, based on the distortion induced by the stitch threads penetrating the
fabric. The distortions are referred to as Stitch Yarn induced fibre Distortions (SYD).
The fibre paths are locally distorted, resulting in a wedge shaped opening in the fabric.
The dimensions of the SYDs were measured on different fabrics in undeformed and
deformed state. A semi–empirical relation is established to relate the dimensionless
width and length of the distortions to both the fabric properties and the amount of
shear deformation.
The dimensions of the SYDs are not constant over the fabric, but exhibit a certain
variation. It was found that a lognormal distribution of the widths and lengths applies
better than a normal distribution. The lognormal distribution is understood from the
physical limit on the width of the SYDs, set by the number and diameter of the stitch
threads.
The dimensions of SYDs are in the order of millimetres and hence an order of
magnitude larger than the space between the fibre filaments. As a result, the flow
behaviour of resin through the fabric is dominated by these distortions. The flow
model describes the methodology to transform the SYDs into flow channels, with
interaction points through which the fluid can enter or leave the channel.
However, it is not sufficient to analyse a single SYD, vary its dimensions and use the
averaged permeability as an estimated value of the permeability. It is shown that
a network of flow channels is more appropriate to estimate the permeability and its
variation. A network of flow channels, based on the measured dimensions of the SYDs
is analysed.
The permeability is shown to be affected not only by the variation in the SYDs
dimensions but also by the type of distribution. Clustering of large channels causes
fast flow paths and hence a higher averaged permeability. The degree of order in the
distribution of the widths consequently plays an important role in the value of the
permeability. As a result, experimentally determined permeabilities of a single type
of reinforcement, measured under equal conditions can differ by a factor of 2.5.
Permeability measurements are performed employing different test rigs. A relatively
low amount of variation was found in results of the separate devices. The variation is
within the limits set by the model for most cases. A mutual comparison of the result
obtained with different test rigs reveals a large amount of variation. This is mainly
attributed to the lack of a standardised measuring method for the permeability.



Samenvatting

De grenzen van de productie processen voor composiet materialen worden steeds
verder verkend. Betere prestaties en een hogere kwaliteit worden geeist tegen een
lagere kostprijs. Een diepgaande kennis van de processen die plaatsvinden tijdens de
productie is essentieel om aan deze eisen te kunnen voldoen. Het onderzoek waarover
dit proefschrift handelt, heeft tot doel de fundamentele kennis over een van de cruciale
onderdelen van het Resin Transfer Moulding (RTM) productie proces uit te breiden:
het impregnatie gedrag van de textiel versterkingsstructuur. De productvorm wordt
gemaakt van droog vezelmateriaal. Dit voorgevormde vezelpakket wordt geplaatst
in een nauw sluitende matrijs holte. Vervolgens wordt de hars gëınjecteerd in de
gesloten matrijs holte met een druk van 2 tot 10 bar. De vezelversterking bestaat uit
een vezelbundel structuur, hetzij opgebouwd uit afzonderelijke lagen weefsel of legsel
(Non–Crimp Fabric, NCF), hetzij gemaakt met een behulp van geautomatiseerde
technologieën zoals vlechten en “fibre placement”.
Het werk is in de eerste plaats uitgevoerd als onderdeel van de samenwerkingsverband
tussen het Nederlands Lucht– en Ruimtevaartlaboratorium (NLR) en de Universiteit
Twente (UT). In de tweede plaats is het onderzoek deel van het Europese project
FALCOM. Als laatste is een deel van het werk uitgevoerd op de KU Leuven in het
kader van een Marie Curie Fellowship project.
Het was duidelijk dat een fundamenteler kennisniveau nodig was om problemen rond
het productie proces op te lossen. De problemen hebben zowel betrekking op het
fabriceren van de vezelversterking als op het impregnatie gedrag in het geval Resin
Transfer Moulding (RTM) wordt toegepast.
Het grootste probleem bij het toepassen van het RTM proces voor structurele en/of
complex gevormde producten – wat het doel is van het NLR – is een gedegen
voorspelling van de permeabiliteit van de vezelversterking. De pogingen om basis
modellen te definiëren waarmee de permeabiliteit kan worden voorspeld, zijn tot
op heden gestrand. Een aanzienlijke hoeveelheid variatie in de permeabiliteit van
vergelijkbare versterkingsmaterialen, gemeten onder vergelijkbare omstandigheden
vormt een groot obstakel in de voortuitgang van de voorspellende modellen.
Een methodologie om niet slechts een gemiddelde permeabiliteits waarde te voorspellen,
maar ook een indicatie van de variatie als gevolg van variaties in de interne geometrie
van de vezelversterking wordt hier beschreven. Het grond idee is dat de variaties in de
permeabiliteit niet enkel door experiment gerelateerde spreiding veroorzaakt worden,
maar ook door variaties in de interne structuur van het materiaal op een relatief kleine
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lengteschaal (≈ 0.1mm).
Dit werk is daarom gerelateerd aan zowel geometrie modellering als stromings
modellering. De interactie tussen beide is cruciaal. Er is bovendien nog een
link naar het onderzoeksgebeid van het textiel vervormingsgedrag: het effect van
afschuifvervorming – het meest belangrijke vervormingstype – op de geometrie en op
de variaties in de structuur van de geometrie is ook geanalyseerd. De resultaten van
eerdere projecten hebben aangegeven dat materiaal eigenschappen en vervormings
eigenschappen elkaar wederzijds beinvloeden. Bijgevolg wordt de link tussen het
belangrijkste type vervorming van vezelversterkingen en het geometrisch model als
relevant beschouwd.
Enkel materialen uit de klasse van de Non–Crimp Fabrics (NCF) zijn hier gebruikt.
Een laag van dit versterkingsmateriaal bestaat uit een aantal uni–directionele lagen
vezelmateriaal, die met een onderling verschillende orientatie zijn gestapeld en
vervolgens aan elkaar gestikt zijn. De stikdraad is klein ten opzichte van de
vezelbundels en heeft nagenoeg geen effect op de mechanische eigenschappen, anders
dan dat het de vorm integriteit van het materiaal bevordert.
Het geometrische model bestaat uit een beschrijving van de interne geometry van
Non–Crimp Fabrics, gebaseerd op de verstoring die de stikdraad veroorzaakt wanneer
het door de vezellagen steekt. De verstoring worden “Stitch Yarn induced fibre
Distortions” (SYD) genoemd. Het pad van de vezels wordt lokaal verstoord, wat
resulteert in een wigvormige opening. De afmetingen van deze SYDs zijn voor
verschillende types NCF gemeten in onvervormde en vervormde staat. Een semi–
empirische relatie is afgeleid om de dimensieloze breedte en lengte van de verstoring
aan zowel de materiaal eigenschappen en de hoeveelheid afschuiving te relateren.
De afmetingen van de SYDs zijn niet overal in het materiaal constant, maar vertonen
een zekere variatie. Een lognormale verdeling van de breedtes en lengtes voldoet beter
dan een normale verdeling. Dit wordt veroorzaakt door de minimale breedte van de
SYDs, die bepaald wordt door het aantal en de diameter van de stikdraden in de
SYD.
De afmetingen van de SYD zijn in de orde van millimeters, wat een orde van
grootte groter is dan de ruimte tussen de vezelfilamenten waaruit een vezelbundel
is opgebouwd. Het stromingsgedrag van de hars door het versterkingsmateriaal
wordt derhalve bepaald door deze verstoringen. Het stromingsmodel beschrijft een
methodologie om de SYDs te transformeren tot stroomkanaaltjes, die onderling
verbonden zijn, zodat de vloeistof in en uit het kanaaltje kan stromen.
Het is echter niet voldoende om een enkele SYD te analyseren, haar afmetingen te
varieren en de gemiddelde permeabiliteit als een geschatte waarde te gebruiken voor de
permeabiliteit van de gehele NCF. Een netwerk van stroomkanaaltjes is beter geschikt
om de permeabiliteit af te schatten. Een dergelijk netwerk is geconstrueerd op basis
van de gemeten SYD afmetingen en vervolgens geanalyseerd.
Het is aangetoond dat de permeabiliteit niet alleen door de variatie in de afmetingen
van de SYDs bëınvloed wordt, maar ook door de ruimtelijke verdeling van de
dimensies. Paden met verhoogde vloeistof stroom ontstaan wanneer grotere SYD
bij elkaar in de buurt liggen, met als gevolg een hogere gemiddelde permeabiliteit. De
hoeveelheid orde in de verdeling van de afmetingen speelt daarom een belangrijke rol
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in de waarde van de permeabiliteit. Experimenteel bepaalde permeabiliteits waarden
van een enkel type vezelversterking kunnen daarom een factor 2.5 verschillen.
Permeabiliteits metingen zijn verricht met behulp van verschillende opstellingen. Een
relatief kleine hoeveelheid variatie tussen de resultaten is gevonden voor elke opstelling
afzonderlijk. De variatie valt meestal binnen de voorspellingen van het netwerk model.
Een onderlinge vergelijking tussen de resultaten van de verschillende opstellingen
toont echter een grote hoeveel variatie aan. Dit is voornamelijk toegeschreven aan
het ontbreken van een gestandaardiseerde meetmethode voor de permeabiliteit.
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Nomenclature

Roman

ak coefficient (k ∈ N) [-]
as proportionality factor between saturated volumetric flow and

inverse square root of time
[m3·s 1

2 ]

au proportionality factor between unsaturated volumetric flow
and inverse square root of time

[m3·s]

A needle spacing [m]
b width of an SYD [m]
bk coefficient (k ∈ N) [-]
B stitch distance in machine direction [m]
d0 compacted stitch yarn diameter [m]
dA

p projected distance of needle spacing [m]
dB

p projected distance of stitch distance in machine direction [m]
f frequency of occurrence [%]
F function
Ftheo theoretical function
Fc critical value in statistic test
Fs statistical value
h height [m]
hc cavity height [m]
H0 null hypothesis
i index [-]
I current [A]
j index [-]
k index [-]
K permeability [m4]
K0 Kozeny constant [-]
K1 first principal permeability [m4]
K2 second principal permeability [m4]
K0 permeability in machine direction [m4]
K45 permeability in 45o direction [m4]
K90 permeability in transverse direction [m4]
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K0
0 nominal permeability in machine direction [m4]

K90
0 nominal permeability in transverse direction [m4]

K0
ET

effective permeability in machine direction [m4]
K90

ET
effective permeability in transverse direction [m4]

Knom
ET

nominal effective permeability [m4]
KE effective permeability [m4]
KLB

ET
lower bound effective permeability [m4]

KN
ET

normalised effective permeability [m4]
KUB

ET
upper bound effective permeability [m4]

KN normalised permeability [m4]
Ks saturated permeability [m4]
Kx permeability in x–direction [m4]
Ky permeability in y–direction [m4]
K

(1)
u unsaturated permeability (flow front based calculation) [m4]

K(2) (un)saturated permeability (flow rate based calculation) [m4]
Kch channel permeability width averaged radius [m4]
Ksy centre element permeability including stitch yarn [m4]
l length of an SYD [m]
lc length of a cylinder element [m]
L length [m]
Lf focal length of ellipse [m]
LT total flow length [m]
mi ith central moment of a data set
M mass [kg]
n index [-]
ninlet number of inlet nodes [-]
noutlet number of outlet nodes [-]
nset number of sets of SYD widths [-]
npermu number of permutations in a set of SYD widths [-]
N number of elements in a set [-]
N0

1 number of elements of the base configuration in machine
direction

[-]

N0
2 number of elements of the base configuration in transverse

direction
[-]

N ch
x number of channels in the x–direction [-]

N ch
y number of channels in the y–direction [-]

p pressure [Pa]
ph hydrostatic pressure [Pa]
P pressure in mould cavity [Pa]
Pi pressure of ith transducer [Pa]
Pinj injection pressure [Pa]
Ps significance level [-]
Psat pressure during saturated flow [Pa]
Punsat pressure during unsaturated flow [Pa]



The Structure–Permeability Relation ix

r radial coordinate [m]
r0 radius of inlet [m]
r1 major radius of ellipse [m]
r2 minor radius of ellipse [m]
rc cylinder element radius [m]
rE equivalent radius [m]
rf fibre radius [m]
rh hydraulic radius [m]
rout outer radius [m]
Re electrical resistance [Ohm]
RE equivalent resistance [m−4]
Rfluid electrical resistance of the fluid [Ohm]
Rref electrical reference resistance [Ohm]
s best estimator of standard deviation
s+ upper limit of scatter/variation
s− lower limit of scatter/variation
S size of the network
t time [s]
tf time at which the flow front position is evaluated [s]
ti time at instant i [s]
tsat start time of saturated flow [s]
tunsat arrival time of flow front at sensor [s]
t0.95 student–t distribution
t∗ time fit parameter [s]
u fluid velocity [m·s−1]
U specific internal energy [J·kg−1]
V volume [m3 ]
Vf fibre content [-]
w weighting function
W weight of preform [kg]
x cartesian coordinate [m]
xf flow front position [m]
xi ith data value
y cartesian coordinate [m]
z cartesian coordinate [m]

Greek

α anisotropy [-]
α0 anisotropy of equivalent permeabilities [-]
αN anisotropy of normalised permeabilities [-]
αr anisotropy of channel radii [-]
αs significance level [-]
β reorientation angle [rad]



x Nomenclature

γ shear angle [o]
γtrans transition shear angle [o]
δ (infinitesimally) small part
δϕ small variation in elevation angle [rad]
∆ difference
ε error
εR relative error [-]
η second elliptical coordinate [-]
θ rotation/angular coordinate [rad]
θsph azimuth angle [rad]
κ SYD dimensionless width [-]
λ SYD dimensionless length [-]
µ dynamic viscosity [Pa·s]
µln mean of the logarithmic values
ξ first elliptical coordinate [-]
ξf position of flow front (first elliptical coordinate) [-]
ρL linear density [kg·m−1]
ρA areal density [kg·m−2]
ρ volumetric density [kg·m−3]
σ standard deviation
τ shear stress [Pa]
φ porosity [-]
ϕ element flow [m3·s−1]
ϕsph elevation angle [rad]
Φ volumetric flow rate [m3·s−1]
ΦM mass flow rate [kg·s−1]
Φs volumetric flow rate for saturated flow [m3·s−1]
Φu volumetric flow rate for unsaturated flow [m3·s−1]
χ2 chi–squared distribution
ψ arbitrary function

Special Characters

A cross–sectional area [m2]
AE area of ellipse [m2]
K packing coefficient [-]
L velocity gradient operator
P perimeter [m]
V electrical voltage [V]
VR relative voltage [-]
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Subscripts

0 initial condition or position
1 first direction/vector component
2 second direction/vector component
b bottom face
ln logarithmic variant of parameter
min minimum parameter value
max maximum parameter value
p parallel
s serial
t top face
[·] element index number
[·,·] two–dimensional element index number

Vectors

F body forces [m·s−2]
N element interpolation functions [-]
p nodal pressures [Pa]
q heat flow [J·s−1]
r ellipse radii [m]
x0 translation [m]
xG global Cartesian coordinates [m]
xP principal Cartesian coordinates [m]
ϕ nodal flux [m·s−1]
ξ elliptical coordinates [-]

Tensors & Matrices

D deviatoric deformation rate [s−1]
I unit tensor [-]
K permeability [m4]
M element matrix
W vorticity [s−1]
σ stress [Pa]
σd deviatoric stress [Pa]
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Mathematical

∇ gradient operator
∇2 Laplace operator
d derivative operator
D material derivative operator
∂ partial derivative operator
e exponential
ln natural logarithm
·T transpose
·−1 inverse
·̄ mean value∑

summation
O() order of magnitude
|| parallel or longitudinal
⊥ perpendicular or transverse
· contraction
: double contraction
·̄ mean value
·̃ approximate value

Abbreviations

DOF Degree Of Freedom
DV Digital Video (camera)
KES–F Kawabata Evaluation System – Fabrics
KU Leuven Katholieke Universiteit Leuven
LCM Liquid Composite Moulding
NLR National Aerospace Laboratory
NCF Non–Crimp Fabric
RTM Resin Transfer Moulding
SYD Stitch Yarn induced fibre Distortion
UT University of Twente
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Chapter 1

Introduction

The production technologies of fibre reinforced composite materials have received a
substantial amount of attention in the past decades. The increasing application of
composites for complex shaped products and structural components, accompanied by
increasing demands on cost efficiency and/or product quality is the main driving force
behind the investments in the improvement of the composite production technologies.
The major aircraft builders have stimulated and keep stimulating the development
of composite components, by aiming for large percentages of composite materials in
their aircrafts 1.
Evidently, a high product quality is demanded, not only concerning the dimensional
accuracy of the product. The homogeneity of the product and its resulting mechanical
properties are as relevant. Moreover, this high quality should be achieved in a cost
effective manner. Hence, fundamental knowledge on the production process plays
a crucial role. Fundamental knowledge allows control of the process better and
subsequently a guarantee of not only a higher, but also a more reproducible product
quality. The industries consequently invest in increasing the knowledge level on the
production technologies.
It should be noted that the entire production process is optimised, rather than only the
product (or product design) itself. Optimisations on the level of the individual steps
in the production process only partly cover the optimisation of the complete process.
The process has to be considered as an integral process, with strong correlations
between the various steps. The design engineer should be aware of these correlations.
Evidently, fully integrated process simulation software is a welcome tool for the
designer, to enable him to perform his task.
The complete composite production cycle is depicted in the flow diagram figure 1.1.
An integrated design tool covers all the stages of the process. Different types of models
are distinguished:

1. models predicting the process properties, such as deformation and impregnation
1The Airbus A380 contains roughly 40% composite material, a volume to be increased for the

successor of the A340. Boeing aims with their new Dreamliner, which is currently being developed,
at 55-70% composite material.

1
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behaviour;

2. models predicting the material behaviour;

3. models predicting the mechanical properties.

Mould Shape

Product

Fabric Properties

– Architecture

– Product

Preforming

– Fibre Distribution

– Fibre Orientation

Resin Injection

– Permeability

– Curing

Final Product

– Mech. Properties

– Shape

O
pt

im
is

at
io

n

O
ptim

isationO
pt

im
is

at
io

n

O
pt

im
is

at
io

n O
ptim

isation

Figure 1.1: Flow diagram of the design process of a composite product.

The models are often developed separately. However, the parameters of the different
models are generally interrelated. For example, deformation (process property
models) depends on the fabric structure, but also on the fibre properties (material
property models). Inversely, the fibre properties can depend on the deformation of
the fabric. Similarly, impregnation properties (process property models) depend on
the deformation of the fabric (process property models), but also on the material
properties (material property models) and inversely.
Hence, it is essential to develop the various models in conjunction with each other.
An example of a project in which this was attempted is the European funded project
FALCOM (Failure, Performance and Processing Prediction for Enhanced Design with
Non–Crimp–Fabric Composites, G4RD–CT–00694, [1]). Part of the work presented
here, is performed in the framework of this project.
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1.1 The Project’s Prelude

The input for the process simulation tools comprises a cocktail of process dependent
and material dependent parameters. Process and material characterisation are both
the subject of several research projects. A research project in which this was
illustrated, is the development of the composite landing gear for the NH90 helicopter
[2]. The trailing arm of the helicopter, normally made from high strength steel, was
replaced by a braided carbon fibre epoxy composite, depicted in figure 1.2.

Figure 1.2: Composite trailing arm of the NH90 helicopter. (Braided at Eurocarbon, RTM–
injection done at NLR).

The project covered all aspects starting from the manufacturing of the braid, the
design of the mould, the resin injection (Resin Transfer Moulding was used, a
technology that will be introduced shortly), simulation of the injection and several
tests concerning the quality and mechanical properties of the final product.
It was revealed during the project that the knowledge level on the manufacturing of the
preform and the subsequent impregnation behaviour fell short of the desirable level.
The process settings for the braiding machine were difficult to predict. Numerous
tests had to be carried out, before the preform could be braided successfully. The
experience of braiding companies is also that the experimentally obtained process
settings for a certain product cannot be generalised to be used for other products.
The subsequent impregnation of the resin suffered from similar problems. Experience
had shown how to obtain a well filled product (id est no dry spots and a void content
lower than 2%). However, the process settings, such as injection strategy, but also
the locations of the injection gate and vents, could not be predicted properly by a
model, let alone be optimised. The bottleneck in the prediction of the impregnation
behaviour is the permeability of the preform. The local permeability depends on the
local internal structure. A permeability model that predicts the local permeability
sufficiently well, while accounting for the preform deformation at a local level was
not available. This is partly due to the complexities in the internal structure and
the strong relations between the material behaviour and the deformation behaviour
of the textile reinforcement.
The second part, even more important than the first, is the large amount of scatter
on the measured permeability data. Variations up to of a magnitude of a decade
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are found in the measured permeabilities. Evidently, adding more complexity to the
predictive models, only makes sense if the models are also able to identify the sources
of the variation in the permeability.

Clearly, a more fundamental level of knowledge on both the preforming stage and
the processes determining the permeability of a reinforcement was desirable. Hence,
a collaborative research project between the National Aerospace Laboratories (NLR)
and the University of Twente (UT) was started [3]. The project aims to develop
simulation tools to:

1. Predict the process settings for an over–braiding machine, given an arbitrary
mandrel shape and given specified fibre orientations or specified mechanical
properties;

2. Predict the local permeability and its variation of a textile reinforcement, based
on its internal structure, as a function of the deformation of the reinforcement.

The project was set up in close conjunction with industrial partners who can benefit
from the results obtained in the project. Constant feedback between the developments
in the project and the needs of the industry has been strived for during the currently
still ongoing project.
The work presented in this thesis concerns the prediction of the permeability. More
precisely, it presents an analysis of the relation between the internal structure and
the permeability of the class of Non–Crimp Fabrics, while bearing in mind that the
prediction of the variability is as relevant as the prediction of the averaged value of the
permeability. A large part of the geometrical model, describing the internal structure
of the reinforcement, was done in the framework of a Marie Curie Fellowship project
(HPMT-CT-2000-0030 [4]) at the Katholieke Universiteit Leuven (KU Leuven). The
Marie Curie Fellowship project covered also permeability experiments on the analysed
fabrics in both relaxed and sheared configurations. The outline of the thesis is
presented after a brief introduction into the relevant items in the field of composites
and their manufacturing technologies.

1.2 Composite materials

An extensive range of composite materials and production technologies is available.
At this point, it suffices to note that only continuous fibre reinforced composites,
made by a “Liquid Composite Moulding” (LCM) process are of interest here. LCM
processes [5] are near–net–shape production processes in which resin is injected in a
preform manufactured from dry textile material.

1.2.1 Textile Reinforcements

The reinforcement is made from textile material. Various types of textiles are
distinguished, from which woven textiles are the most common. Weaves have a
rich history, starting long before the emergence of fibre reinforced plastics, based
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on glass, carbon and aramid fibre bundles [6]. Modern manufacturing technologies,
applied to process these materials, inherited the production methods developed over
the ages to process wool, cotton, flax and other natural materials. The introduction
of automation enabled significantly higher production rates.
Weaves exhibit an excellent integrity of the textile. However, the deformability is
limited due to the commingled configuration of the bundles. Moreover, the properties
of the fibres are not used to their full extent, due to the undulation of the yarns.
Undulation is hardly present in uni–directional materials. The price of the enhanced
mechanical properties in the plane of the fabric is a restricted stability of the material
in dry form, compared to woven fabrics. Moreover, the resistance to delamination
of a uni–directional based composite is also lower than that of woven fabric based
composites, due to the absence of commingled bundles. The term uni–directional is
not as strictly defined as it appears: fabrics with 80% or more of their fibres in one
direction are generally considered to be part of the family of uni–directional fabrics.
Uni–directional materials are mainly available as pre–preg material. The materials
are either used as sheet material or as tape in tape layer machines or as impregnated
bundles in filament winding [7, 8]. The application in LCM production technologies
is limited, compared to woven fabric, due to the lower shape integrity.
This led to the development of the class of “Non–Crimp Fabrics” (NCF)2, consisting of
uni–directional plies of fibres, stitched together to maintain integrity of the structure.
The low amount of undulation guarantees an optimal use of the mechanical properties
of the fibres in the plane of the fabric. The stitches prevent a significant drop
in the out–of–plane properties of the fabric, as occurs in uni–directional based
composites. The deformability of dry NCFs is better than that of woven fabrics.
Large deformations can be obtained with a low amount of force applied [9, 10].

1.2.2 Preform Manufacturing

A preform from dry textile material is made if a Liquid Composite Moulding process
– to which this introduction is limited – is applied to manufacture the composite
product. The preform has roughly the shape of the final product. Several technologies
are available to build a preform. Stitching technologies and binder powder methods
are the most commonly applied techniques if woven fabrics or NCFs are employed.
The stitch technologies are similar to the production process of NCFs, but applied
locally, at strategic points to fix the position of different layers of material with respect
to each other. A small thread – compared to the fibre bundles – is used. A needle
penetrates the fabric, either completely, or only partly (so–called ‘tufting’). A loop
of the stitch thread is left behind at the bottom side of the fabric in case of a full
penetration. Possibly, the loops are mutually connected3, for a higher stability of the
preform.
Binder powder technologies can be used as an alternative to stitching. A thermoset
powder is applied to the fabric. The powder becomes viscous if the temperature is

2The material is also referred to as “Non–Crimp stitched (bonded) Fabrics” or as Multiaxial
Multiply stitched Fabrics (MMF).

3This process is explained in more detail in chapter 2
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elevated. The powder particles migrate partly in the fibre bundles. Moreover, the
elevated temperature causes some cross–linking of the binding powder and hence a
bond is formed between the different layers of fabric. The stiffness of the preform
is increased, since the powder is applied homogeneously onto the fabric, effectively
limiting the moveability of the fibre bundles. Hence, the shape of the preform is
maintained better. The binder powder does not, or hardly, affect the impregnation
behaviour. The advantage of the use of binder powder compared with stitching is
that stitching distorts the fabric. The disadvantages are the longer preparation time
and the required heating cycle.
Alternatives to manufacture the preform are braiding [11, 12] or fibre placement
technologies [13, 14]. The advantages of these technologies relative to the stitching and
binder powder technologies are the larger possible complexity in preform shape, the
possibility to automate the preform manufacturing process and the enhanced control
over the fibre directions.
Combinations of technologies are also applied, for example, using woven fabrics or
NCF in combination with braids, or improving the properties of a braid in thickness
direction by applying additional stitching.

1.2.3 Liquid Composite Moulding

The family of “Liquid Composite Moulding” (LCM) production technologies is widely
applied for the production of composites. Numerous variants were developed in the
past decades. These variants are used on either side of the market of composites:
LCM is applied for both high and low performance composites. The basic idea is that
a dry, near–net–shaped, textile preform is placed in a closed cavity. Fluid resin is
subsequently injected, followed by a curing stage, as depicted in figure 1.3. The final
product needs hardly any post processing steps (therefore the term ‘near–net–shaped’
is used)
The resin can be injected under pressure ranging from just above atmospheric pressure
up to 10 bars for large components with high fibre contents. Alternatively, the resin
can be sucked through the preform by applying a vacuum. A combination of pressure
and vacuum is also applied, in particular to control the void content in the final
product.
The cavity can be formed by rigid moulds or by a rigid lower mould and a flexible
upper mould, for example a foil or a plastic with a low stiffness. Rigid moulds sides
result in a smooth surface and a high quality surface finish. The use of two rigid
tools is limited to the range of smaller products (roughly order of 1 metre maximum).
Larger structures, such as ship hulls or windmill blades use single side tooling with
a flexible top mould. The injection pressure is either low or no injection pressure
is applied, in case a flexible tooling is used. Moreover, vacuum must be applied to
control the product shape and fibre content.
An overview of the most important variations of the family of LCM technologies is
presented in table 1.1. The actual number of variants is much larger, especially since
processes are being combined to profit from the benefits of the combined techniques.
The number of abbreviations for the different processes is as confusing as it is large.
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8 Introduction

There is no standard for the names of the processes, resulting in double names: names
that are used for more than one process and vice versa. The terms used in table 1.1
are found to be the most natural by the author, but this will certainly be rejected by
others.

preform

upper mould

lower mould

(a) Dry preform placed in the mould.

preform flow front

resin reservoir
opened outlets

opened outlets

(b) Impregnation of the preform.

preform

resin reservoir
closed outlets

closed outlets

(c) Curing of the resin. (d) Near–net–shaped product.

Figure 1.3: The four basic steps in the Liquid Composite Moulding process.

1.2.4 The Permeability of a Textile Reinforcement

A measure for the resistances that a fluid or gas experiences when flowing through a
porous medium is the permeability of the medium. Darcy [15] was the first to derive
a relation between the pressure drop over the medium – in his case sand – and the
flow rate – the water of the fountains of Dijon. Darcy’s law reads:

Φ =
K

µ
· dp

dx
, (1.1)



1.2. Composite materials 9

with Φ the volumetric flow rate, K the permeability, µ the dynamic viscosity of the

fluid4 and
dp

dx
the pressure gradient in the flow direction. Darcy derived his law by

experimental observation, but in a later stage it was shown that it can be derived
from the Stokes flow equation:

∇p − µ∇2u = 0, (1.2)

by applying a volume averaging procedure [5] (∇p is the pressure gradient in vector
notation, ∇2 represents the Laplace differential operator, u is the velocity vector).
Darcy’s law is applied in a number of fields, from which the oil industry is one of
the most important5. The introduction of LCM processes for fibre reinforced plastics
started the search for a suitable mathematical description of the flow through a textile
reinforcement. Darcy’s law proved to be a convenient way to relate the pressure drop
over the preform (or: ‘porous medium’) and the volumetric flow rate of the resin to
each other.
The next step was to formulate a relation between the fibre content of the
reinforcement and the permeability, which was first done by Kozeny and Carman
[16–18]:

K =
r2
f

8K0

(1 − Vf )3

V 2
f

, (1.3)

with K0 an empirical constant and rf the radius of a fibre filament (not to be
mistaken by the bundle radius) and Vf the fibre content. Initially (1.3) was derived
for homogeneous isotropic porous media (hence the permeability is a scalar). Several
researchers [17–22] have proposed adaptations for the Kozeny–Carman relation, since
a textile reinforcement is not homogeneous and often also not isotropic. They made a
distinction between K0 for axial and for transverse flow. The Kozeny–Carman relation
is applied frequently, despite the significant discrepancies in the values reported in the
literature. A brief overview of the values suggested in the literature for the Kozeny
constant is presented in table 1.2.

Table 1.2: Values of the Kozeny constant as found in the literature for axial and transverse
flow.

Ref. K||,0 K⊥,0 Vf

Williams et al. [17] 0.1 - 0.8 0.8 - 6 0.2 - 0.65
Gebart [18] 1.66 - 1.78 8
Lam and Kardos [19] 0.35 - 0.68 11 0.57 - 0.75
Batch et al. [20] 1.06 8
Muzzy et al. [21] 3 - 7 7.6 < 0.8
Gutowski et al. [22] 0.7 17.9 0.4 - 0.8

4Originally, the viscosity was not included in Darcy’s law.
5Darcy’s law comes into play if the flow of oil through the porous rocks in the earth is analysed.
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The large variations in the suggested values for the Kozeny constants are a reflection
of the large amount of variation in the experimental results. Measured permeability
values can hardly be reproduced and are reported to vary up to one decade [5, 23–
31]. The origin of this variability is unknown, although it is generally recognised that
the variations partly depend on the reproducibility of the measurement if different
testing equipment is employed [32] and partly on variations in the structure of the
reinforcement [28, 33].
Meanwhile, the development of predictive models for the permeability of a fibrous
reinforcement continued. The number of approaches is nearly as large as the
number of researchers, but in general two different approaches can be recognised:
(1) the attempts to predict the permeability in a more empirical way, based on the
conviction that the inherent material variations do not justify a detailed geometrical
model, and (2) the attempts to find a suitable mathematical representation of the
fabric reinforcement. The main drawback of the empirical methods is the lack of
permeability predictions for new materials, or new configurations. An extensive set
of measurements is required if a new type of reinforcement is used or developed.
This work has more affinity with the second approach, employing or searching
for a mathematical approach to describe the internal geometry of a preform and
subsequently feed this into a permeability prediction model. Modelling strategies
are being developed that describe the internal structure and the fibre bundle paths
explicitly [34–39]. Mathematical formulae, based on energy methods and geometric
functions, form the base of the prediction of the fibre bundle trajectories and cross–
sections in various types of textile architectures. The free space between the bundles
directly follows from the geometrical model and is fed into flow modelling software
[24, 40–42]. All models are based on a certain level of idealisation of the geometry of
the internal structure – inherent to their mathematical character. Hence, it is certainly
true that the variability observed in the experiments and consequently the variability
and unpredictability of the LCM processes experienced at workshop level, will never
be completely covered by a mathematical model. Even if experimental scatter is ruled
out completely. As a result, identification of the variabilities in the internal structure
of a reinforcement and a translation into a geometrical model and subsequently into
a flow model is seen as a critical issue in the development of permeability prediction
models.
The link between the internal structure of a textile reinforcement and the permeability
provides an opportunity to relate the deformation behaviour to the permeability as
well. The material model, deformation model and impregnation model are interrelated
as was indicated earlier on (see also figure 1.1). The importance of these interrelations
for process simulation of the more complex shaped and more critical components, was
recognised in several projects (FALCOM [2], TECABS [43]).
A logical route to link the deformation behaviour and impregnation behaviour of a
fabric is believed to be found in the incorporation of deformation mechanisms in the
geometry model, which is the shared core of the three models. Drape is addressed by
several authors [9, 44–46] recognising shear as the main deformation mode. Therefore,
the explicit incorporation of shear in the geometrical model, is considered as the
first, and possibly sufficient, step towards integration between deformation models
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and impregnation models. Hence the variation in the internal geometry of both
undeformed and sheared materials is investigated here.

1.3 Objective

The objective of this thesis is to develop a permeability model that is based on the
internal geometry of a Non–Crimp Fabric (NCF), in which the variation in the internal
structure is explicitly incorporated. The output of the model should hence be a
permeability plus an indication of the expected variation on it. Moreover, the effect
of shear deformation on the internal structure is an aim to be included in the model.
A comparison between experimental results and the proposed model is an additional
objective.

1.4 Outline

The core of the thesis is formed by three chapters. Firstly, a comprehensive description
of the class of Non–Crimp Fabrics is presented in chapter 2. The exploration of the
structure of the fabric, results in a geometrical description, based on the distortions
in the plane of the fabric, formed by the stitch threads penetrating the fabric.
The distortions are referred to as Stitch Yarn induced fibre Distortions (SYD). An
experimental investigation of the dimensions of these SYDs of three different fabrics
in relaxed and sheared state leads to generalised rules for both the SYD dimensions,
including the variation of the dimension, and the relation between the dimensions and
the fabric deformation. The generalised rules are semi–empirical and depend mainly
on the macroscopic properties of the fabric, such as the number of individual plies
and their orientation and the stitch pattern and stitch thread that were used.
The second task is to formulate a method to transform the geometrical parameters
to a flow model, such that the averaged and – in particular – the variability of the
permeability can be determined. The main assumption of the flow model, presented
in chapter 3, is that the flow in the SYDs, defined in the geometrical model, dominates
the overall flow. The dimensions of the SYDs are an order of magnitude larger than
the space between the filaments inside the fibre bundle. It is shown that the fluid
is able to flow from one SYD of one ply into an SYD of another ply at different
locations of the SYD. The locations where the SYDs interact, are determined by the
stitch distances A and B, the fibre orientation in the bundle and the length of the
SYD.
The second assumption is that it is not sufficient to analyse the effect of variable
SYD dimensions on the permeability, on a single SYD. A network of SYDs is used
to analyse the flow of the fluid through the reinforcement. Therefore, each section of
the SYD between two interaction points is treated as a channel. A network is then
formed, describing the flow resistances from interaction point to interaction point.
The resistance of the channel is based on the dimensions and shape of the section of
the SYD and on a Poiseuille flow. An analogy with an electrical system of resistances is
found appropriate and a finite element formulation is implemented to solve the system
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of flow equations. The variability of the dimensions of the SYDs is implemented by
assigning dimensions to the SYDs in accordance with the measured averaged value
and standard deviation. The resulting variable flow resistance of the channels in the
network is translated to an overall permeability, including an estimate for the amount
of variation that can be expected.
A comparison between experimental data and the numerical models is the subject
of chapter 4. The experiments that were performed aim to achieve more than a
verification of the model presented in chapter 3. A mutual comparison between
different measuring techniques is presented in addition. Measurements were performed
at three different institutes, with partly different and partly equal fabrics.
Moreover, the permeability of sheared fabrics is measured. The experimental data is
compared to the observed changes on the internal geometry of the fabric under shear,
as presented in chapter 2.
Finally, the conclusions and recommendations for further research are summarised in
chapter 5.



Chapter 2

Geometrical Model

The prediction of the permeability of a fibrous reinforcement depends on a large
number of parameters. A crucial part of the permeability prediction is reserved for
the representation of the internal geometry of the reinforcement [47, 48], especially
for reinforcements with a high fibre content. It is recognised that the number
of parameters in the geometry model that affect the permeability, combined with
the possible variations in and interrelation between these parameters, confronts the
researchers with difficult questions. A distinction between different length scales can
be made to describe each of the parameters on its most suitable length scale. Generally
three length scales are recognised [49–51], as depicted in figure 2.1: the macro scale
(preform/fabric scale), the meso scale (fibre bundle scale) and the micro scale (fibre
filament size). Properties calculated at smaller length scales are incorporated in the
larger length scales in a homogenised form.

macro level meso level micro level

Figure 2.1: The three length scales as generally used in composite modelling.

The global flow characteristics are found on the macro scale (10−1–100 m, [34]);
resin flow simulations generally show only macro (preform) scale flow progression.
Fabric characteristics such as weave type, bundle size (the number of filaments in a

13
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bundle) and orientation are defined at this scale. Diallo et al. [52] listed a number of
parameters: type of fluid, cavity pressure, fabric structure and orientation and resin
saturation. The influence of these parameters on the permeability was investigated by
experiments. This approach is typical for the macro scale permeability predictions.
The main conclusion of their work is that there are large differences in the permeability
for different fabrics, even if they have the same fibre content. No explanation of
these differences is presented by them. The applicability of the empirical approach is
limited to low fibre content products, in which the macroscopic characteristics of the
reinforcement dominate.
The resolution of the macro scale is not sufficient to distinguish typical meso level
geometrical characteristics like bundle shape, size and interaction, which have to be
taken into account for more accurate permeability predictions. The meso length scale
describes the textile reinforcement locally at the order of the tow sizes (in the range of
10−2–10−3 m, [34]). The textile reinforcement is subdivided into repetitive sections,
in which all the typical features of a fabric are defined. The free space between bundles
(‘inter bundle’ space) is defined by describing the bundle path and shape. This allows
a significantly more detailed analysis of the flow through a reinforcement compared
to the macro level based flow simulation [47]. The effect of local fabric deformation
or of the bundle size can be modelled. Moreover, multilayer effects, such as nesting,
can be accounted for [47, 53].
The impregnation of the bundles themselves becomes more critical in products
with higher fibre contents. The dimensions of inter bundle channels approach the
dimensions of the intra bundle channels – the channels between the filaments inside a
fibre bundle. To this end, the micro level (10−5 m, [34]) is introduced, describing the
fibre bundle as a set of fibre filaments rather than a homogeneous continuum (either
permeable, or impermeable).
Flow along and perpendicular to the fibre bundles and the influence of capillary flow
is typically investigated at this level. Lundström and Gebart [54], Loendersloot and
Akkerman [55], Huber and Maier [56] and Bechtold and Ye [57] investigated the effect
of the packing of a fibre bundle (see figure 2.2) and observed a significant influence for
both transverse and longitudinal flow. An increase in the longitudinal permeability
is found for non–ideally packed fibres [54, 55], whereas a decrease is found for the
transverse permeability for an increasing disorder in the packing [54, 56, 57].
The distinction of the different levels shows that flow channels exist at two levels:
between and inside the bundles (meso and micro level respectively). The term ‘single
porosity’ refers to the negligence of the micro level flow. ‘Double porosity’ applies to
the models in which the flows at meso level as well as at micro level are accounted
for.
The main question remains to what level the mathematical model should be
elaborated. In general it is recognised that the micro level porosity has to be accounted
for in addition to the meso level porosity at higher fibre contents [48, 58]. However,
the incorporation of a second length scale in a prediction method strongly increases
the computational requirements of such a model, resulting in an unacceptable loss of
efficiency in engineering practice. Belov et al. [24] have stated that neglecting the
double porosity is justified for a first approximation of the permeability. The single
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(a) Regular array (b) Irregular array

Figure 2.2: Regular and irregular packing of fibre filaments inside a bundle.

porosity model underestimates the permeability by 20–30%, which is acceptable,
especially when the large scatter, observed in experimental results, is taken into
account. Standard deviations of 30% are common, maximum values may differ by an
order of magnitude from the minimum values [25, 27, 59]. Evidently, the experimental
scatter and its origin are dominant factors in the prediction of the permeability. The
origin of the variability of the permeability is partly found in the internal structure of
the reinforcement material. Consequently, a prediction of the amount of variation on
the permeability provides an important contribution to flow modelling software and
process control.

An accurate permeability prediction requires a detailed description of the geometry
on the one hand. On the other hand, the applicability of a model in an engineering
environment is limited by its required computational effort. It is attempted to find a
suitable method to satisfy both needs. Generally speaking, most available models are
based on a unit cell description. A unit cell is the smallest unit that can represent the
entire structure. Unit cell descriptions are widely applied to link lower level features
of a material or process to a higher level. Unit cell descriptions are also adopted
for the geometrical models presented here. However, a less conventional type of unit
cell is defined. The unit cells are not simply a subdivision of the continuum, as is
the case in conventional unit cell models [47, 51]. The geometrical model for a Non-
Crimp Fabric (NCF) is based on a specific geometric characteristic of stitched fabrics:
the distortions induced by the stitch thread piercing through the fabric. The model
essentially describes only a part of the domain, which is recognised as the dominant
flow region. This flow domain possesses a high aspect ratio: the length of the domain
is much larger than the width and the height. The meso level solution of the flow
domain formed by this distortion is used for a macro level (fabric/preform level)
prediction of the permeability. The macro level prediction is based on a number of
meso level flow domain solutions rather than on a single solution. This method allows
the explicit incorporation of the variability in flow domain dimensions as observed in
practice.
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2.1 Structure and Manufacturing of Non-Crimp
Fabrics

Non–Crimp Fabrics (NCF) consist of uni–directional plies of fibres which are stitched
together by a relatively thin thread compared to the bundle size. The stitching
provides the fabric with sufficient stability in dry form for preforming. NCF can
therefore be used in Liquid Composite Moulding (LCM) processes, as woven fabrics.
Other uni–directional reinforcements cannot be used in LCM and are generally only
available as pre–preg material.
The term ‘non–crimp’ refers to the low amount of undulation (‘crimp’) of the fibre
bundles (figure 2.3) compared to woven fabrics. The fabric is also referred to as
‘Multiaxial Multiply stitched Fabrics’ (MMF). The latter term is employed by Lomov
et al. in a series of articles on this type of material [10, 60–63]. The term crimp refers
to the reduction in effective length of the fibre bundle compared to the actual length
of the centre line of the bundle, see figure 2.3. Strictly speaking, the term ‘non–
crimp’ is not correct, since the fabric does show undulation in and out of the plane
of the fabric due to the stitching [64]. The in–plane undulation causes a slight drop
in mechanical properties relative to uni–directional material [62], but the in–plane
mechanical properties are improved compared to woven fabrics of equal fibre content.
An additional advantage of NCFs is the enhanced impregnation behaviour compared
to woven fabric due to the uni–directionality of the fibrous plies. This aspect invoked
a growing application of Non–Crimp Fabrics in aerospace/aircraft manufacturing and
windmill industries, especially in the field of LCM production technologies.

(a) Uni–directional material

(b) Undulating (woven) material

Figure 2.3: Schematic difference between uni–directional material and undulated material
(woven fabrics and braids).

A single layer NCF is manufactured from a stack of uni–directional plies of fibres
[65]. The uni–directional plies are positioned on the machine bed after which they
are stitched together to obtain a single ply of NCF material [66]. An NCF production
machine is shown in figure 2.4. The orientation of the fibres on the machine bed is
defined as the angle between the fibres and the manufacturing direction (θ in figure
2.4(b)). In practice, the angles of the uni–directional plies are limited to 0o, 90o

and ±45o, combined as 0o/90o or ±45o fabrics (biaxial NCF), 45o/90o/-45o fabrics
(triaxial) and 45o/0o/-45o/90o fabrics (quadriaxial). Other configurations for triaxial
and quadriaxial fabrics can be used as well. Additional chopped fibres or random mat
layers may be placed under, between or on top of the fibrous plies.
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(a) Machine layout

machine direction

fibre direction

θ

needle bar

stitch distance A (needle spacing)
stitch distance B

(b) Machine parameters

Figure 2.4: Liba machine for the production of a Non–Crimp stitched Fabric [66].

The basic production parameters of an NCF are depicted in figure 2.4(b): the
orientation of the fibres (θ) and the stitch distances A and B. Stitch distance A
depends on the needle spacing and stitch distance B, the distance between subsequent
needle penetrations in machine direction, depends on the speed of the loom and the
frequency of knitting actions. A rectangular grid of needle penetrations results, since
the stitch distances are constant during the manufacturing process.
The stitching process is described in numerous articles, e.g. [60, 66–68]. The warp
knitting process of a chain knit stitch pattern is schematically shown in figure 2.5.
Other patterns are made in a similar way. The fibre bundles are spread on the machine
bed during production, reducing the distinction between fibre bundles: a more or less
continuous bed of fibres is formed. The stitches subsequently penetrate this fibre
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fibre bed

top

bottom

needle

stitch yarn

(a) First penetration of the stitch needle

fibre bed

top

bottom

needle

stitch yarn

loop

folding

(b) First retreat of the stitch needle

fibre bed

top

bottom

needle

stitch yarn

loop

(c) Second penetration of the stitch needle

fibre bed

top

bottom

needle

stitch yarn

loop
loop

folding

(d) Second retreat of the stitch needle

Figure 2.5: Schematic of the warp knitting process of a chain knit pattern in four steps.
The arrows in the needle indicates the direction of motion of the needle.

bed and the fibres are forced aside by the needle and the stitch thread penetrating
the individual layers, figure 2.5(a). Subsequently the needle retreats, while pulling
the thread back through the fabric such that a loop of the stitch thread is left at the
bottom face, figure 2.5(b). The loop is ‘folded’ onto the fabric surface by the machine.
The stitch thread is pushed through the loop, figure 2.5(c), during the next knitting
action. Again the needle is retreated, figure 2.5(d) and the new loop is folded onto
the fabric surface, fixing the position of the previous loop. The loops at the bottom
face can be considered as oriented in the manufacturing direction, inherent to the
stitching process. A rotation from the centre line of the loop with respect to the
machine direction is referred to as ‘tilt’ [60]. Tilt is also clearly visible in the images
of the bottom faces of the fabrics shown in figure 2.7.

machine direction

tilt angle

Figure 2.6: Tilt of a loop at the bottom face of an NCF. Solid lines refer to the tilted position
of the loop, the dashed lines to its original position.
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Stitch patterns are formed by moving the needles in the transverse direction, in
addition to the relative movement in machine direction. Three different stitch patterns
are shown in figure 2.7: a tricot, a tricot/chain and a chain warp knit. Note that the
pattern at the top face differs for each fabric, but the loops at the bottom face are
identical for all stitch patterns, inherent to the manufacturing process. Different types
of stitch thread as well as different stitch tensions are applied. Mechanical properties
[69, 70], drape properties [9, 71] and consequently impregnation properties are affected
by these stitching parameters. A comprehensive study on the internal geometry and
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Figure 2.7: Three different stitch patterns. Note: the pattern on the top face differs, whereas
the loops at the bottom face are identical for all patterns.
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on the effects of the stitch thread material and stitch tension on the performance
of Non–Crimp Fabrics was performed in the European project FALCOM (Failure,
Performance and Processing Prediction for Enhanced Design with Non–Crimp Fabrics
– G4RD–CT–00694) [1]. The research on the internal geometry and the permeability
prediction of NCF described in this thesis is carried out as a part of the FALCOM
project in conjunction with the Marie Curie Fellowship project (HPMT-CT-2000-0030
[4]) carried out at the Katholieke Universiteit Leuven (KU Leuven).
Mouritz et al. [72] stated that the needle hardly damages the fibres when penetrating
the fabric: less than 0.5% of the fibres are damaged during the stitching process of
dry fabric. However, the fibre filament paths are distorted due to the stitch yarn left
behind by the needle. A double wedge shaped distortion in the plane of the fibres
in each layer is formed [73], illustrated by figure 2.8. Moreover, the loops, which are
formed on the bottom face of the fabric (see figure 2.5), are forced between the fibres
of the lower layers, leading to differences between the distortions on the top face and
the bottom face of the fabric.

1
2l

b

10mm

(a) Top face

1
2l

b

10mm

(b) Bottom face

Figure 2.8: Stitch Yarn Distortions (SYD) on the top and the bottom face of a biaxial ±45o

NCF (chain knit pattern), with b the width of the SYD and l the length.

The distortions in the inner layers of triaxial and quadriaxial NCFs are formed in
the same way as the distortions at the top and bottom faces, but they cannot
be analysed by visual inspection. Lomov et al. [60] and Edgren and Asp [64, 74]
studied the internal structure of an NCF based composite employing microscopy.
The microstructure of the NCF composite is shown in figure 2.9. The composite was
manufactured from 6 layers of triaxial Devold NCF. It was manufactured using the
RTM process. Epoxy resin (DERAKANE 411–350 Epoxy Vinyl Ester) was used and
the fibre content is 53.3% [75]. The machine direction corresponds with the horizontal
of the image. The bundles in the top and bottom ply of a layer are oriented at 45o

and -45o, respectively, with respect to the machine direction. The mid ply bundles
are oriented in normal direction to the plane of the paper.
Firstly, it is observed that the distinction between separate bundles has virtually
disappeared as a result of spreading the fibres on the machine bed (notice, for
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example, the mid ply of the second layer). The separations between what appears
to be separated bundles, indicate the presence of a distortion, induced by the stitch
yarn. One example of traces of fibres travelling from one apparent bundle to the
neighbouring one is indicated by the circle on the right hand side.

45o bundle
90o bundle

-45o bundle

stitch thread crossing bundle

2000µm
1

2

3

4

5

6

Figure 2.9: Internal geometry of a six layer triaxial NCF composite (fibre content 53.3%)
[75]. A part of a stitch thread is recognised in the left circle. The second circle shows a
crossing bundle: fibres appearing to cross from one bundle to another. The numbers indicate
the individual layers.

Secondly, it is noticed that the top and bottom plies in each layer are rounded off.
This rounding off is caused by the stitch yarns, which are, apart from the one indicated
by the left hand side circle, not visible in this micrograph. The shape of the apparent
bundles of the mid plies is more or less rectangular.
Weimer and Mitschang [73] report on the distortions resulting from the stitching
process as ‘stitch holes’. The stitch tension and stitch thread direction with respect
to the fibre direction are held responsible for widening of the stitch holes, but no
quantification of this effect is presented in their paper. The definition of the distortions
for modelling purposes was first presented in Lomov et al. [60], who referred to them
as ‘cracks’ and ‘channels’. Here the term Stitch Yarn induced fibre Distortion (SYD) is
used to comprise both these terms. Lekakou [76] and Schneider [77] also describe these
distortions and refer to them as ‘fisheyes’. Note that the distortions are not continuous
in the direction of the fibres, as can be seen in figure 2.8. The model of Lundström
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[78] assumes continuous channels formed by the stitches. Recent modifications in this
model account for so–called fibre crossings [79, 80], which implies a similar limitation
to the channels as implicitly accounted for in the geometrical description using the
SYDs.
The geometrical description and subsequent permeability prediction model of an NCF
is primarily based on the SYDs, since the dimensions of the distortion are an order
of magnitude larger (meso level) than the space between the filaments inside a fibre
bundle (micro level). Consequently, the overall (macro level) flow is assumed to
be dominated by the meso level flow. A simple duct flow analysis illustrates the
dominance of the meso flow. The space inside the fibre bundles and between the fibre
bundles is approximated by a duct. Consider a laminar flow of an incompressible
fluid in a duct with radius rout and length L. The pressure gradient is assumed
to be constant over the length of the duct (∂p/∂x = ∆P/L, P=pressure). The
fluid velocity u(r) in the duct, expressed in radial coordinates and applying no–slip
boundary conditions, is:

u(r) =
r2 − r2

out

4µ

∆P

L
, (2.1)

with µ the viscosity of the fluid. Integration of (2.1) yields the expression for the
volumetric flow Φ:

Φ =

2π∫
θ=0

rout∫
r=0

u(r) rd rd θ =
π

8µ

∆P

L
r4
out → Φ ∼ r4

out. (2.2)

The flow is proportional to the fourth power of the radius, implying a strong effect
of the radius of the duct on the flow. The permeability (according to Darcy’s law
(1.1) proportional to the volumetric flow) inside the bundle is roughly estimated four
orders of magnitude smaller than the permeability in the flow domains formed by the
stitches for each order of magnitude difference in the dimensions of the inter and intra
bundle channels. Consequently, the meso flow dominates the overall flow. The same
conclusion was drawn by Drapier et al. [81]. They investigated the permeability in the
direction perpendicular to the plane of the fabric. The distortions are approximated
as channels through the thickness of the fabric. A higher stitching density increased
the permeability according to their measurements. This confirms the hypothesis that
the flow is dominated by the meso level channels.

2.2 SYD model

The definition of a Stitch Yarn induced fibre Distortion contains two assumptions:

1. The shape of the SYD is constant through the thickness of the fabric;
2. The length axis of the distortion is oriented in the fibre direction;

The first assumption implies that through–thickness–effects are not accounted for.
It is assumed that the shape of the distortion does not vary over the thickness.
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This assumption violates the observations on the internal geometry obtained from
micrographs (see figure 2.9). The stitch thread affects the shape of the bundle in the
top and bottom ply of a layer, resulting in a shape as depicted in figure 2.10(a). The
cross-sectional shape of the domains in the mid plies are more or less rectangular (see
figure 2.10(b)).
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(a) Flow domain top and bottom ply.
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(b) Flow domain mid ply.

Figure 2.10: The shape of the flow domain for the top and bottom plies versus the shape of
the domain of the mid plies. The shapes are based on micrograph pictures of NCFs composite
specimen.

The shape of the domain can affect the flow significantly, as shown by (2.2). However,
a more correct description of the domain complicates the geometrical model and the
subsequent flow modelling. The variation in through–thickness direction of the flow
domain is therefore disregarded.
The alignment of the length axis with the fibre direction in a ply results in a stack of
differently oriented SYDs around a stitch thread penetration location. The distortions
are oriented perpendicular to each other for an orthogonal biaxial NCF in undeformed
state. A third and fourth orientation is added for a triaxial and quadriaxial NCF
respectively. The resulting stacks of SYDs are shown in figure 2.11. The thick solid
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Figure 2.11: A stack of SYDs of a ±45o biaxial (a), +45o/90o/-45otriaxial and 45o/0o/-
45o/90oquadriaxial fabric. The thick solid lines refer to top face SYDs, the dotted lines to
inner ply SYDs and the thin solid lines to bottom face SYDs. The machine direction (0o) is
indicated by the arrow.
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lines belong to the SYD on the top face of the fabric, the dotted lines to SYDs of mid
plies and the thin solid lines to the SYD at the bottom face of the fabric.
It is also evident from figure 2.11 that an anisotropic permeability is expected for
the triaxial NCF, given the resin flow in the SYDs dominates the overall flow. The
permeability in 90o direction (perpendicular to the machine direction) will be larger
than the permeability in 0o direction (machine direction). The permeability of the
biaxial and quadriaxial NCF is expected to be isotropic.
The SYDs are only found at the locations where the needles penetrate the fabric (a
rectangular grid is formed as mentioned before). The resin mainly flows in overlapping
locations from one SYD to another SYD, that is located in another, neighbouring ply.
The centre of the SYD is the most obvious overlap region, but overlapping locations
are also found at the tips of the SYDs. The number and locations depend on the
length of the SYDs – which can vary as will be discussed further on – the stitch
distances and the orientation θ of the SYDs with respect to the machine direction.
Possible locations of the overlapping regions are limited to integer multiplications of
the projected distance dp of the stitch distances A and B on the stitch yarn distortion
(see figure 2.12).

A

B
δ

θ1 θ2

machine direction

fibre dir 1fibre dir 2

dB
p

dA
p

transverse direction transverse direction

Figure 2.12: Schematic representation of the SYD configuration of a biaxial NCF. The solid
lines correspond to the top ply SYDs, the dashed lines to the bottom SYDs. The projected
distances and the distance between the tips are indicated by dA

p , dB
p and δ respectively. The

angles of the fibre direction with respect to the machine direction are θ1 and θ2. The light
gray areas indicate the interaction regions between the SYDs of the top and bottom plies in
the centre of the SYD; the dark gray areas indicate the interaction regions in the tip regions.
The black circles point to the stitch threads penetrating the fabric.
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It can be derived that the relations between the projected distances dp and stitch
distances A and B are:

dA
p =

A

sin θ1 − cos θ1 tan θ2
; (2.3)

dB
p =

B tan θ2

cos θ1 tan θ2 − sin θ1
. (2.4)

The angle between both fibre families is not necessarily equal to 90o; the angle is 45o

in triaxial and quadriaxial fabrics. Note that shear deformation of the fabric does not
affect the projected distances, provided a trellis frame shear is applied.
The projected distances can also be used to calculate the separation δ between
neighbouring SYDs. The distance δ equals the absolute difference between dA

p and
dB

p , as illustrated by figure 2.12:

δ =
∣∣dA

p − dB
p

∣∣ . (2.5)

The separation δ can be small, for specific combinations of the stitching parameters
and fabric properties (for example nearly equal values for A and B combined with
long and wide SYDs). A small separation allows resin to flow more easily from one
distortion to another than a large separation. Semi-continuous channels are formed
if the separation is extremely small and is only formed by a small number of fibres
crossing from one side of the SYD to the other.
The stitch thread itself is not modelled here. This simplification is based on the
assumption that the permeability of the stitch thread is significantly higher than the
bundle permeability, since the fibre count of the stitch thread is an order of magnitude
smaller than the fibre count of the bundles. Nordlund et al. [79, 82] showed that taking
the stitch yarn into account in the permeability prediction of the meso level flow
channels does affect the permeability, but only to a limited extent. The permeability
at the location of the stitch thread may decrease up to 20% depending on the width
of the thread with respect to the flow channel. They concluded that the effect of the
crossings of fibres from one bundle to a neighbouring one is stronger than the effect
of the stitch thread.
The geometry description does not necessarily assume a single porosity. Double
porosity can be implemented using appropriate boundary conditions. This will be
addressed in more detail in chapter 3.

2.2.1 SYD Dimensions

The dimensions of the distortions depend on a number of parameters. The parameters
are partly related to manufacturing conditions and partly to fabric and stitch yarn
properties. The most relevant parameters are listed below:

– fibre yarn properties (tow-size, stiffness, compression behaviour);
– stitch yarn properties (tow-size, stiffness, compression behaviour);
– stitch pattern;
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– stitch tension;
– orientation of the stitch yarn with respect to the fibres;
– fibre treatment (e.g. sizing);
– needle dimensions and type;
– stitch process;
– loom speed.

It is not clear yet, how each of these parameters affects the dimensions of the SYDs. A
comprehensive description of the material, manufacturing process and treatments may
reveal the relation between these parameters and the dimensions of the distortions.
However, this does not appear to be a practical solution. The aim here is to relate
the basic properties of the NCF (such as the number of layers, the stitch pattern
and the fibre content) to the permeability of the material. The model complexity
increases to an unacceptable level for use in practical situations, if all above mentioned
characteristics are taken into account. Hence, a more practical approach is to attempt
to find global trends for the main characteristics, such as the stitch pattern and the
stitch tension, the latter defined in a qualitative sense, e.g. ‘high’ or ‘low’. A semi–
empirical relation can then be employed, requiring a minimal number of experiments
for each type of fabric.
The dimensions of the SYD are assumed to be proportional to the stitching thread
diameter, which is formulated in the empirical relation proposed by Lomov et al. [60]
and revised by Loendersloot et al. [63, 83]. The width b (figure 2.8) of an SYD is
given by:

(Top face SYD) b = κt × d0 (a);
(Bottom face SYD) b = κb × d0 (b);
(Inner SYD) b = 2d0 (c).

(2.6)

Here, d0 refers to the compacted diameter of the stitch yarn [60] and is calculated by:

d0 =
√

4ρL

πρK , (2.7)

with ρL and ρ the linear and volumetric density of the yarn respectively and K the
packing coefficient, which is equal to 0.907 for a perfect hexagonal packing. The
empirical proportionality constant κ is defined separately for the front and the back
face of the fabric (subscripts f and b respectively). The revision of the initially
presented relations [60], which made no distinction between top and bottom face
proportionality constants κ, is based on an analysis of different NCFs. An intolerable
discrepancy was found between the values of the proportionality constant based on
the dimensions of the distortions on the top face and those related to the bottom
face. The suggestion of proportionality to the stitch thread diameter arises from the
observation that the number of stitch threads present in the SYD is a physical lower
bound of the width of the SYD.
A dimensionless length λ is defined using the stitch distances A and B. The grid lines
connecting the needle penetrations in and perpendicular to the machine direction (the
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dashed lines in figure 2.13) form a boundary for the length of the SYD. The fibres are
forced aside by the stitch piercing the plies. As a consequence, the SYDs will close
once passing one of the lines 1–2, 2–3, 3–4 or 4–1. Which line is passed, depends
on the fibre direction with respect to the machine direction (θ in figure 2.13). No
distinction is made between the lengths of the top or bottom face and the lengths of
inner SYDs, resulting in the relation:

l =

⎧⎪⎨⎪⎩
λ

B

cos |θ| for |θ| < arctan A
B ;

λ
A

sin |θ| for |θ| ≥ arctan A
B .

(2.8)

A

B

θ

machine direction
fibre direction

transverse direction

1 2

34

Figure 2.13: The dimensionless length of the SYD is based on the stitch distances A and B.

The experimental analysis of the dimensions of the inner SYDs is significantly more
complex than the analysis of the outer SYD dimensions. The methodology to analyse
the dimensions, as presented in the following section, is not capable of determining
the inner SYD dimensions. It is based on optical inspection of the two faces of the
fabric. This type of optical analysis can consist of visual inspection by the bare eye,
or be digitalised for example using a camera or flat bed scanner, combined with image
analysis software. However, only the outside can be captured. No information can be
retrieved from the inside of the material. Alternatives are the use of microscopy or X–
ray tomography [40]. Both require the preparation of composite specimens, possibly
causing distortions in the internal structure compared to the dry fabric. Moreover,
relatively expensive equipment is needed.
Most others reporting on stitch thread induced distortions in the fibrous plies [63, 77–
79, 82–84] use an optical approach, similar to the one adopted here. Hence, they also
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limited themselves to biaxial materials and did not report a method to measure inner
SYDs. The width of SYDs in inner plies was measured on micrographs by Lomov
et al. [60], which resulted in the third relation of (2.6). Edgren and Asp [64, 74]
only studied the bundle shape. However, both articles confirm the idea that the
dimensions of the inner SYDs are smaller than the outer SYDs. The thread position
is approximately vertical in the SYD, whereas the threads bend towards a horizontal
position in the outer SYDs. A schematic cross-section of a triaxial NCF around a
stitch thread is depicted in figure 2.14. It shows that the stitch threads will widen
the SYDs of the top and bottom plies. This widening results in the bundle shape
as recognised in the micrographs (figure 2.9) made by Edgren and Asp. It is shown
below (see section 2.3) that the averaged minimum value of κ of the SYDs at the
outer plies approaches the value of 2. It is thus reasonable to use the relation (2.6)(c)
for the inner SYDs, assuming the absence of widening effects, other than the presence
of the stitch threads.

+45o

+45o

90o
90o

-45o

-45o

Figure 2.14: Schematic drawing of the stitch thread in the SYD in different layers of the
fabric (45o/90o/-45o, the arrows indicate the fibre direction). To the right the exploded view
of the layers (stitch thread omitted for clarity of the figure).

The proposed empirical relation lacks generality in the sense that it is only defined
for the specific set of undeformed fabrics presented in [60]. As mentioned above, it
will be impossible from a practical point of view to create a comprehensive model,
predicting the SYD dimensions based on the manufacturing conditions and material
specifications of both the fibres and the stitch thread. It lies beyond the scope of this
thesis to reveal all the underlying processes. This work is restricted to the extension
of the practical applicability of the proposed relations (2.6) and (2.8), mainly by
observation of the influence of the stitch pattern and the stitch tension (again: only
qualitatively). Additionally, the effect of shear is investigated, based on the explicit
linkage of deformation and impregnation models.
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2.2.2 Materials and Experiments

The proposed model is based on the analysis of three different fabrics. The three
fabrics evaluated will be referred to as B1, B2 and B3 for convenience. Figure 2.7(a)
– (c) shows the fabrics B1–3 respectively. Fabrics B1 and B2 were studied previously
in references [10, 61, 62], fabric B in reference [60] is the same fabric as B1 here. These
studies only involve unsheared configurations. Results of sheared configurations on
fabrics B1 to B3 were presented in [63, 83, 85, 86]. The fabric data is presented in
table 2.1. The properties of fabric B1 and B3 correspond more to each other than
the properties of B2 correspond to those of B1 or B3: both B1 and B3 have 12K
fibre bundles and a ±45o configuration of the bundles. However, the stitch thread of
fabric B3 is slightly different from the one used in B1 and B2 and the areal density of
B3 is significantly higher than the areal density of B1 and B2. Moreover, the stitch
tension of fabrics B1 and B2 appears to be higher than the stitch tension of fabric
B3. The stitches on the bottom face of the three fabrics are shown in figure 2.15. The
magnification of the images is equal. Clearly the loops of B1 and B2 are similar, but
those of B3 lie more loosely, non–straightened on the fabric, indicating a lower stitch
tension.

Table 2.1: Material data from the studied Non–Crimp Fabrics (∗calculated with (2.7)) Note:
1 tex = 1 g·km−1.

B1 B2 B3

manufacturer Saertex Saertex Devold
areal density [kg m−2 ] 0.322 0.329 0.541
fibre Toray Toray Tenax

T700 50E T700 50E HTS 5631
fibre count in tow [-] 12K 24K 12K
orientation [o ] ±45 0/90 ±45
stitch PES PES PES
linear density [tex] 7.6 7.6 5
stitch yarn diameter∗ [mm] 0.088 0.088 0.071
knit pattern tricot tricot/chain chain
gauge [needles/inch] 5 5 5
stitch length [mm] - - 2.5

The dimensions of the SYDs were measured by analysis of scanned images of the
fabric. A standard PC–scanner (HP1200) and standard PC are used. The scanner
used for the experiments has a resolution of 1200dpi. This method was also used by
Schneider [77]. The resolution of modern scanners is sufficient to acquire the desired
information from the images. It should be noted, though, that there is no information
on the accuracy of a scanner. This may vary from type to type and brand to brand.
Calibration of the scanner is recommended prior to the experiments. The maximum
achievable accuracy of the experimental method depends on the resolution of the
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5mm

(a) Bottom face B1.

5mm

(b) Bottom face B2.

5mm

(c) Bottom face B3.

Figure 2.15: Differences in the stitch loop shape of the three NCFs indicate different stitch
tensions.

scanner: The relative measuring accuracy per pixel εR equals:

εR =
25.4
1200

= 0.021 [mm · pixel−1]. (2.9)

The presented results were obtained by taking the centre coordinates and edge
coordinates of 100 SYDs (see figure 2.16, the centre coordinate at the crossing of
lines 1–4 and 2–3 is not indicated). In practice, the points 1 and 4 in figure 2.16
and points 2 and 3 were not taken from the same SYD in most cases. It appeared
to be difficult to determine the width and length of many SYDs accurately due to
poor contrast between the bundle and the SYD space. Consequently, the data are
weakly correlated. The number of widths and lengths taken as a pair from a single
SYD is too low to draw any conclusions on the relation between the SYD dimensions.
The centre coordinates are taken from a grid of 11×26 needle penetrations (A and B
direction respectively).

x
x xx

1
2

3
4

10mm

Figure 2.16: The distance between coordinates 1 and 4 gives the length and the distance
between 2 and 3 the width of the SYD.
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2.3 Results and Statistical Treatment

Experimentally acquired constants inherently possess a certain variation. However,
the variation in the dimensions of the SYDs is too high to be neglected and
appears to be inherent to the material rather than to the analysis method. The
variation is therefore treated as an explicit feature of the geometrical model of NCFs.
The incorporation of variation in the geometrical model allows an estimate of the
upper and lower bounds of the predicted permeability values. This approach is
fundamentally different from providing an averaged value and a possible deviation on
this averaged value, based on numerical errors or limited accuracy due to assumptions
or simplifications in the model. Here, it is aimed to identify the source of the
variation explicitly. It is assumed here that the variations in the internal structure
– id est at micro–level – of the material are reflected in the large amount of scatter
that is observed in measured permeability values [25, 27, 59]. As a consequence, the
dimensions of the SYDs are presented as averaged values with a certain distribution.
The consequences and inherent complications for the flow modelling are presented in
chapter 3.

2.3.1 Stitch Distance and Needle Spacing

The measured stitch distances A and B are collected in table 2.2. The manufacturer’s
specifications are given between brackets. Deviations ranging from 1% (fabric B2) up
to 12% (fabric B3) with respect to the specifications were observed. These deviations
are attributed to fabric relaxation and deformation occurring due to storage of the
fabric on a roll and initial handling for preform preparation. The data exhibits a
statistical variation of 0.02 up to 0.11 (B2 and B1 respectively).

Table 2.2: Measured stitch distances A and B. The value between brackets indicates the
manufacturer’s specification.

B1 B2 B3

A [mm] 4.94±0.11 (5.08) 5.03±0.02 (5.08) 5.71±0.04 (5.08)
B [mm] 1.71±0.08 ( - ) 2.64±0.05 ( - ) 2.20±0.02 (2.5)

2.3.2 Relaxed Configuration

Both the width b and length l of the SYD were analysed for relaxed and sheared
configurations. The averaged values of b and l, including the lower and upper bounds
of the scatter, are tabulated in table A.1 and table A.2. The measured values were
made dimensionless according to equations (2.6) and (2.8) for further analysis. The
data for the relaxed configurations is discussed first. The sheared configurations are
treated in section 2.3.3.
Deviations of the fibre orientation with respect to the specified orientation in
undeformed state can be as large as 8o [83, 85]. The term ‘relaxed configuration’ rather
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than ‘unsheared configuration’ is found more appropriate to indicate the state of the
specimen and will be used throughout the thesis. Part of the scatter in the dimensions
of the SYDs of relaxed configurations originates from this fibre misalignment. A
maximum error of 13% is estimated employing the model presented in section 2.3.3,
that accounts for the effect of shear on the SYD dimension (assuming 8o shear and a
linear decrease of the width to half of the initial width, between 0o and 30o).
The dimensions of the SYDs in relaxed state are not corrected for a possible initial
misalignment. This approach corresponds to the engineering practice, since the
misalignment of the fibre bundles is caused by taking the fabric off the roll and thus
allowing it to relax. The excellent deformability causes the fabric to shear without
any significant force applied [10, 87]. Consequently, maintaining a perfect alignment
of the fibre bundles is an impossible task in practice. Note, that both impregnation
and mechanical behaviour are affected by the misalignment of the fibre bundles.
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Figure 2.17: Histograms of the dimensionless widths κ for fabric B1. The dotted and solid
lines are the normal and lognormal distribution functions based on the averaged value and
estimated standard deviation of the measured data.

Normality The histograms of the measured dimensionless widths κ are presented
in figures 2.17 to 2.19. The histograms of the dimensionless lengths λ in figures 2.20
and 2.21. The frequencies of the intervals of the histograms are presented in tables
A.5 to A.7. Histogram data is not available for the lengths of the SYDs of fabric B1.
A normal and a lognormal distribution function is plotted on top of the histograms
(dotted and solid line respectively). The distribution functions are obtained from the
estimated standard deviation σ and averaged value x̄ of the measured data.
The validity of the assumptions of the type of distribution of the data is tested by
performing statistic tests [88, 89]. A ‘null hypothesis’ H0 (the data is distributed
according to the tested law) is postulated and subsequently tested. The outcome
of the statistic test is the statistic value Fs, which is compared with the critical
value Fc. The null hypothesis is rejected if Fs > Fc. Here a Jarque–Bera test of
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Figure 2.18: Histograms of the dimensionless widths κ for fabric B2. The dotted and solid
lines are the normal and lognormal distribution functions based on the averaged value and
estimated standard deviation of the measured data.
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Figure 2.19: Histograms of the dimensionless width κ for fabric B3. The dotted and solid
lines are the normal and lognormal distribution functions based on the averaged value and
estimated standard deviation of the measured data.

goodness–of–fit is employed. Other tests, such as the standard chi–squared (χ2) test,
the Kolmogorov–Smirnov, Anderson–Darling or Shapiro–Wilk test can be used as
well. More information on goodness–of–fit tests is found in appendix B. The statistic
value Fs in the Jarque–Bera test equals [90–92]:

Fs =
N

6

(
m2

3

m3
2

+
1
4

(
m4

m2
2

− 3
)2
)

, (2.10)
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Figure 2.20: Histograms of the dimensionless lengths λ for fabric B2. The dotted and solid
lines are the normal and lognormal distribution functions based on the averaged value and
estimated standard deviation of the measured data.
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Figure 2.21: Histograms of the dimensionless lengths λ for fabric B3. The dotted and solid
lines are the normal and lognormal distribution functions based on the averaged value and
standard deviation of the measured data.

with N the sample size and mk the kth central moment of the data:

mk =
1

N − 1

N∑
i=1

(xi − x̄)k
. (2.11)

The first central moment equals zero by definition and the second central moment
corresponds to the variance computed using the full sample size N , rather than N−1.
The third and fourth central moment are the skewness and kurtosis of the data. The
skewness is a measure for the symmetry of a distribution around the averaged value.
The kurtosis is a measure for the sensitivity for deviations between the measured
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values and expected values based on the assumed distribution. A normal distribution
has a kurtosis equal to 3.
The critical value of the test Fc is the statistic value of a χ2

1−αs,k distribution with
k the number of degrees of freedom and αs the significance level. Two degrees of
freedom (k = 2) apply for this type of statistic tests and αs is typically 0.05. The
chi-squared statistic value χ2

1−αs,k is tabulated in standard text books on statistics
(e.g. [89]). The critical value Fc equals 5.991 for k = 2 and αs = 0.05. The results
of the statistic test for the κ–values and λ–values are collected in table 2.3. A value
of 1 for H0 indicates that the null hypothesis is rejected, whereas a value of 0 implies
that the hypothesis cannot be rejected. Two null hypotheses were tested:

1. H0: the data is normally distributed;
2. H0: the data is lognormally distributed.

Table 2.3: Normality of the distributions of the dimensionless width and length of the fabrics
B1, B2 and B3 in relaxed configuration according to the Jarque-Bera goodness test (critical
value: Fc = 5.991).

κ λ
linear logarithmic linear logarithmic

H0 Fs H0 Fs H0 Fs H0 Fs

B1 top 1 13.92 0 3.18 - - - -
bottom 0 2.02 0 0.92 - - - -

B2 top 1 21.63 0 3.23 1 29.90 0 4.10
bottom 0 2.07 0 3.50 1 36.05 0 3.38

B3 top 1 6.56 0 4.12 0 1.82 0 2.39
bottom 0 0.10 1 17.84 0 0.41 0 4.24

The results of the statistical test show that in nearly all cases the assumption of a
lognormal distribution holds. In some cases (κb of fabric B2, λt and λb of fabric
B3) the statistical value of the normal distribution is lower, indicating it is a better
assumption, although the hypothesis of a lognormal distribution is not violated.
The null hypothesis of a logarithmic normal distribution is only rejected for the
distribution of the widths of the SYDs on the back face of fabric B3, whereas the
null hypothesis of a normal distribution is rejected in 50% of the cases. It can
be stated that a lognormal distribution for both the width and the length of the
SYDs is an appropriate assumption for the three fabrics discussed here. Moreover,
a lognormal distribution corresponds with the physical limitations of the widths and
lengths: extremely small or short SYDs are unlikely or even impossible to occur due
to the presence of the stitching yarn, whereas wider or longer SYDs may be observed.
See appendix B for more details on the statistical analysis of the data.

Averaged Length and Width The averaged values of the dimensionless width κ
and length λ for the three different fabrics are presented in figure 2.22 and in tables
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Figure 2.22: Averaged values of the dimensionless widths κ and lengths λ of the SYDs on
top (f) and bottom (b) face of the three analysed fabrics.

A.3 and A.4. The error bars indicate the scatter s, which is based on the assumption
that the data is lognormally distributed. The lower and upper bounds s− and s+ of
the average x (where x designates κ or λ) are calculated as:

s+ = eµln

⎛⎜⎝e

t0.95(N − 1)sln√
N − 1

⎞⎟⎠ ;

s− = eµln

⎛⎜⎝1 − e

−t0.95(N − 1)sln√
N

⎞⎟⎠ ,

(2.12)

with

sln =

√√√√ 1
N − 1

N∑
i=1

(lnxi − x̄ln)2; (2.13)

x̄ln =
1
N

N∑
i=1

ln xi (2.14)

and t0.95(N − 1) the student–t–distribution with N − 1 degrees of freedom and a 95%
significance level. This definition of the scatter corresponds to the 95% confidence
interval for a lognormal distribution. An exception is made for fabric B1. The
logarithmic data of the lengths of the SYDs of this fabric were not available. Hence,
the 95% confidence intervals are based on the normal distribution rather than on the
lognormal distribution ((2.12) to (2.14)). The confidence interval is symmetric with
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respect to the averaged and defined as:

s+ = s− =
t0.95(N − 1)s√

N
, (2.15)

with s the estimated standard deviation of the data set.
Fabrics B1 and B2 show a similar and large difference between top and bottom face
averaged widths (figure 2.22(a)): the top face widths are roughly a factor 1.5 to 2
smaller than the bottom face widths. The averaged dimensionless widths of both
faces of fabric B3 are equal in size. Moreover, the dimensionless widths of the bottom
face are roughly equal for all fabrics. Note that the pattern on the bottom face of the
fabric is the same for all fabrics, inherent to the manufacturing process.
The values for the dimensionless width for the three fabrics are relatively close to each
other and it is difficult to relate the values and the differences between, for example,
κt and κb of fabric B1 and B2 to the material properties presented in table 2.1 or the
stitch distances in table 2.2.
The lengths of the SYDs on the bottom face of B1 and B2 are consistently larger than
those on the front, whereas there is no significant difference between the lengths on the
bottom and top face of B3. The difference is slightly less than the differences between
the widths. The presumed higher stitch tension of fabrics B1 and B2 compared to the
stitch tension of fabric B3 (see section 2.2.2) is a plausible explanation of the increase
of the dimensions of the SYDs. A higher stitch tension forces the loops on the bottom
face into the SYD, resulting in a widening effect. The increase in length is likely to
be related to the widening effect.
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θ1θ2
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fibre dir 1fibre dir 2

transv dir

(a) ±45o fabric, [θ1, θ2]=[45o,-45o]
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B

machine dir/fibre dir 1

transv dir

fibre dir 2

ϕ

(b) 0/90o fabric, [θ1, θ2]=[0o,90o]

Figure 2.23: The SYD length is more restricted for 0/90o fabrics compared to ±45o fabrics
with unequal stitch distances A and B.
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The lengths of fabric B2 are smaller than the lengths of B1 and B3 (figure 2.22(b)).
The fibre orientation is held responsible for the different length of fabric B2, see figure
2.23. The length of the SYDs of the 0/90o fabric is restricted more than the length
of the ±45o fabrics, since the tips of the SYDs are closer to each other. A similar
limitation in length will occur for a ±45o fabric with stitch distances A and B nearly
equal to each other (A ≈ B). The SYDs on the bottom face of the fabric are limited
in the same way, but the distance to the neighbouring stitch penetration differs: the
distance between two subsequent penetrations equals A on the top face and B on the
bottom face. Consequently, the ratio of λt over λb is expected to equal the ratio of
the ratio A over B, resulting in an expected bottom face dimensionless length of (see
tables 2.2 and A.4 for the numbers):

λ̃b =
A

B
λt =

5.03
2.64

· 0.81 = 1.55. (2.16)

A value of 1.34 (table A.4) is measured for λb, which is roughly 15% lower than the
predicted value.

2.3.3 Influence of Deformation

The effect of in–plane shear deformation on the dimensions of the SYDs was analysed
to enable the incorporation of fabric deformation in the geometric model of the NCFs.
Shear angles of 15o, 30o, 45o and 60o were applied to specimens of the three fabrics.
The results are compared to those of the relaxed configurations, discussed in the
previous section. Table 2.4 lists the samples of each of the NCFs that were analysed.

Table 2.4: Samples of each of the fabrics (∗measured in [60]).

γ[o ] relaxed 15 30 45 60

B1 x∗ x x
B2 x x x
B3 x x x x x

Specimen Preparation The specimens were prepared in a small, square frame,
also referred to as a trellis frame. The sides of the frame were made from
150mm×20mm strips of 3mm thick aluminium sheet material. The dimensions of
the frame were 150mm×150mm. The fabric was clamped tightly on two opposite
sides. The corners of the fabrics were cut away to prevent it from being stuck in the
hinges of the frame. No special clamping device was used, since the specimens were
small. Small strips of the same aluminium sheet material served as clamps and were
fastened to the frame using M4 bolts piercing through the fabric. The applied shear
frame and shear method is depicted schematically in figure 2.24.
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(a) Trellis shear frame (b) Exploded view

(c) Sheared

Figure 2.24: Small trellis shear frame used to shear the specimens.

The fabric was clamped in the frame such that the fibre directions of both fibre
families were parallel to the sides of the frame, preventing fibre tensioning during
shear. The shear was applied carefully, allowing or even actively helping the fabric
to shear homogeneously and to prevent wrinkles. A glue, Sicomet c© type 85, was
applied near the edge of the specimens to maintain the shear angle after releasing
the fabric from the frame. Warpage of the specimen is likely to occur, after it is
released from the frame. The fabric is not sheared homogeneously near the edges,
causing fibre tensions in the fabric. Moreover, tension is built up as a result of the
in–plane compaction of the fibre bundles. The glue prevents the fabric from reducing
the shear angle, resulting in warpage out of the plane of the specimen. The shear
angle is maintained, though, provided a sufficient amount of glue is applied. The
fabric is flattened under the PC scanner, regaining the shape it had in the frame.
The specimens are scanned and analysed subsequently.

Normality Histograms of the measured κ and λ of the top face of fabric B3 are
presented in figures 2.25 and 2.26. The histograms of the bottom face of B3 and top
and bottom faces of B1 and B2 are found in appendix A.
The data of the sheared configurations is treated in the same way as the data of the
relaxed configurations (section 2.3). The results of the Jarque–Bera goodness–of–fit
test are presented in appendix B, table B.1. Again it is found that the hypothesis that
the measured data is normally distributed is rejected for most of the configurations
(H0 = 1 in table B.1). It is assumed that all configurations are lognormally distributed
for further modelling purposes.
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Figure 2.25: Histograms of the dimensionless widths κt for fabric B3 in 15o to 60o sheared
configurations. The dotted and solid lines are the normal and lognormal distribution functions
based on the averaged value and estimated standard deviation of the measured data.

Averaged Widths The measured κt and κb values are presented in figures 2.27 to
2.29(a & b) and in appendix A, tables A.3 and A.4. A clear indication of a decrease
of κ is observed for shear angles between 0o and 30o, if the initial value of κ is higher
than 2. The value of 2 can be considered as the minimum value of κ. It corresponds
to the number of stitch yarns accommodated by the SYD. Hence, it is plausible to
believe that in–plane compaction of the plies, occurring during shear, decreases the
width of the SYDs up to a value of 2 for κ. This hypothesis is elaborated below.
The value of κ appears to be mainly influenced by:

– Stitch tension and stitch pattern.
– In–plane compaction of the fibrous plies during shear;

Two different types of stitch tension are distinguished, each of which affects the SYD
dimensions in a different way: (1) tension due to the manufacturing process and (2)
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Figure 2.26: Histograms of the dimensionless lengths λt for fabric B3 in 15o to 60o sheared
configurations. The dotted and solid lines are the normal and lognormal distribution functions
based on the averaged value and estimated standard deviation of the measured data.

tension due to the deformation of the fabric. The effect of the stitch pattern and
stitch tension was studied by Wiggers et al. [71]. An asymmetric shear behaviour of
the stitches is implemented by them in a model describing the stitch tension. It is
found to correspond well to the experimental results. The research performed in the
framework of the FALCOM–project [9, 87] pointed out that stitch tension and pattern
are interrelated to the shear behaviour and to the amount of in–plane compaction and
vice versa. In–plane compaction is likely to occur during shear, based on the following
consideration: a trellis type of shear results in a decrease of the initial area A0 of the
fabric in the shear frame proportional to the cosine of the shear angle γ:

A(γ) = A0 cos γ. (2.17)

The decrease of the surface area is compensated by an increase of the thickness h(γ)
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Figure 2.27: Measured values of top and bottom face dimensionless width κ and length λ
of fabric B1 for various shear angles. The error bars indicate the scatter of the measured
values.
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Figure 2.28: Measured values of top and bottom face dimensionless width κ and length λ
of fabric B2 for various shear angles. The error bars indicate the scatter of the measured
values.

(h0 the initial thickness). Assuming a constant volume V , such that:

h(γ) =
h0

cos γ
, (2.18)

corresponds to the ideal situation, in which no in–plane compaction is observed.
However, observations during trellis frame experiments [9, 87] lead to the conclusion
that:

1. the fibre bundles appear to be compacted during shear;
2. the thickness increases more than inversely proportional to the cosine of the

shear angle (id est violating (2.18)).
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Figure 2.29: Measured values of top and bottom face dimensionless widths κ and length λ
of fabric B3 for various shear angles. The error bars indicate the scatter of the measured
values.

These effects appear to contradict each other. The most likely explanation is
dilatation, as found in the theory of soil mechanics. Dilatation means that the volume
of sheared soil can increase due to a decrease of the packing [93]. Similar processes are
likely to occur for fibre bundles, consisting of non–ideally packed fibres. The bundle
size increases during shear, increasing the amount of in–plane compaction and as a
result, the dimensions of the SYD will decrease.
The assumption of in–plane compaction corresponds well with the observed behaviour
of the averaged widths of the SYDs (figures 2.27 to 2.29(a & b)). The fibres reduce
the SYD width and the stitch thread is moved and compacted as a consequence.
Figure 2.30 visualises this concept. The width of the SYD decreases gradually with
increasing shear angle. The decrease of the width of the SYDs stops as the stitch
yarn is compacted fully and the threads are rearranged such that the most compacted
position is reached (situation changes from figure 2.30(a) to either figure 2.30(b) or
figure 2.30(c) or an intermediate state of the latter two).
The compaction behaviour of the stitch thread is relevant in this process. Unfortunately,
it is hard to obtain accurate data on the properties of the stitch yarn, since
manufacturers of the thread are generally not involved in measuring these properties.
Moreover, the threads are small (typical linear density of the yarn in the order
of 101 tex1), making it virtually impossible to measure the compaction behaviour
properly, even when using specialised textile testing equipment such as the “Kawabata
Evaluation System for Fabrics” (KES–F) [94, 95].
The considerations discussed above lead to the conclusion that the value of κ is
affected by two competing phenomena: (1) in–plane fabric compaction, causing a
decreasing SYD width and (2) stitch yarn compaction, restricting the decrease of
the SYD width. Both occur simultaneously where in–plane fabric compaction is the
dominant deformation mechanism at lower shear angles while stitch yarn compaction
dominates at higher shear angles.

11 tex = 1 g·km−1
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fibre bundle

fibre bundle

stitch threads

compaction direction
(a) relaxed configuration

fibre bundle

fibre bundle

stitch threads

compaction direction
(b) compacted, maximum space taken by stitch thread

fibre bundle

fibre bundle

stitch threads

compaction direction
(c) compacted, minimum space taken by stitch thread

Figure 2.30: Compaction of a fibre bundle and stitch thread resulting in closer packing of
the stitch thread and a smaller SYD width. The minimum width depends on the position of
the stitch threads (b and c).
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The data of fabric B3 (figure 2.29(a & b)) show that the minimum averaged values
of κ for both faces is reached at a shear angle of roughly 30o. This suggests that the
transition between the two compaction mechanisms occurs close to this shear angle.
The data of fabrics B1 (figure 2.27) and B2 (figure 2.28) show a similar drop of the
averaged value to a minimum value of 2, although less obvious, due to the absence
of information on 15o sheared specimens. The minimum value for κt for all fabrics is
roughly two, id est corresponds to twice the most compacted diameter of the stitch
yarn. Fabric properties such as stitch yarn and stitch pattern appear not to affect the
minimum averaged value of κt. The maximum dimensionless width that can be found
equals 2 if it is assumed that (1) the stitch yarn has an ideal, maximum packed and
circular cross–section; (2) the in–plane compaction of the fibre bundles is maximal;
and (3) the stitch yarns lie next to each other in width direction of the SYD. This case
is depicted in figure 2.30(b). An absolute minimum of 1 is expected under the same
assumptions (figure 2.30(c)), but with the stitch yarns in longitudinal direction of the
SYD. In practice, the actual packing will not be ideal, for example due to randomness
and twist in the stitch thread, and the arrangement of the stitch yarns will deviate
from the two extremes presented.
The value of κt of fabric B2 is approximately 2 for all shear angles. The different
lay up (0o/90o, compared to ±45o) combined with the tricot/chain knitting pattern
causes less widening of the SYDs, since part of the stitch thread runs nearly parallel
to the length direction of the SYD, see figure 2.7(b).
The dimensionless width of the bottom face of fabrics B1 and B2 does not approach
the value of 2, whereas κb of fabric B3 does. The width κb of B1 and B2 approaches the
value of 4. A plausible cause is the presumed higher stitch tension. The assumption of
the higher stitch tension is based on the relative loop sizes of the fabrics, as visualised
in figure 2.15 and explained in section 2.3. The stitch loops are partly forced in the
SYD, increasing its averaged width.
Finally, it should be noted that the width of the SYD cannot be determined
unambiguously using the applied optical method. The bundle contour is curved,
as is seen in figure 2.9 and schematically depicted by figure 2.10(a). This curved
shape cannot be distinguished on the scanned images of the fabric. Hence, it is
unknown whether the maximum or the minimum or an intermediate width of the
SYD is measured.

Averaged Lengths The length of the SYDs appears not to be affected by shear.
The locations of the stitch penetrations move along lines parallel to the sides of the
frame during shear in case of a 0o/90o fabric. Consequently, the distances between the
stitch penetrations, measured along the direction of the fibres, remain equal during
shear.
A different situation is observed for a ±45o fabric, since the machine direction is not
parallel to either of the sides of the shear frame. The rectangular A × B connecting
neighbouring stitch penetration is rotated, stretched in one direction and contracted
in the other direction. This effect is shown in figure 2.31. The stretching of the
rectangle allows an elongation of the SYDs, whereas the contraction in the other
direction results in a shortening effect: the width in the tips is reduced to zero. Both
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effects appear to balance each other, apart from three exceptions that could not be
explained: the higher λ’s at the bottom face of fabrics B1 and B3 for the relaxed
configurations (figures 2.27(d) and 2.29(d)) and the lower value of λb of fabric B2
(figure 2.28(d)).

machine dir transverse dir

fibre dir 1

fibre dir 2

B A

(a) No shear.

fibre dir 1

fibre dir 2

B A

γ

(b) Sheared.

Figure 2.31: Effect of shear on the location of the stitch penetrations (black dots) for a ±45o

fabric. A and B refer to the needle spacing and stitch distance, γ is the shear angle.

2.4 Model Formulation

The above considerations and observations lead to a formulation of the behaviour of
the dimensionless width and length. A bilinear function appears to be appropriate for
describing the change of width of the SYDs during fabric shear. The function κ(γ) is
defined as:

κ(γ) =

⎧⎨⎩ κmin − (κmin − κ0)
γtrans − γ

γtrans
if γ ≤ γtrans

κmin if γ > γtrans

, (2.19)

with κ0 and κmin the values of κ at 0o shear (initial value) and its minimum value
respectively. The transition shear angle is indicated by γtrans and indicates the
transition between both compaction mechanisms. The values of κ0 and κmin for
the top and bottom face of the three fabrics are given in table 2.5. The bottom row of
table 2.5 indicates the suggested values for a general fabric model. A distinction for
fabrics with a relatively high and a relatively low stitch tension is made (BH and BL

respectively). The effect of the variations in the averaged widths on the permeability
and its variation will be discussed in section 3.3. A constant value of the length of the
SYD will be assumed in the models, based on the averaged values (table 2.5). The
suggested value for the lengths for a general fabric (B±45) is 2. An exception is made
for 0o/90o fabrics (B0/90), suggesting a value of 1 for the top face and A/B for the
bottom face (see also figure 2.23).
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Table 2.5: The initial and minimum values for the empirically determined dimensionless
width κ and length λ for top and bottom face and the transition shear angle γtrans. BH and
BL are suggested values for high and low stitch tension fabric respectively.

top bottom
κ0 [-] κmin [-] λ [-] κ0 [-] κmin [-] λ [-] γtrans [o ]

B1 3.14 2.07 1.88 4.94 3.78 2.15 30
B2 1.93 1.93 0.89 4.35 3.79 1.76 30
B3 3.93 1.70 2.11 3.83 2.23 2.01 30

BH 3.0 2.0 - 5.0 4.0 - 30
BL 3.0 2.0 - 5.0 2.0 - 30
B±45 - - 2 - - 2 30
B0/90 - - 1 - - A/B 30

2.5 Multi Layer

So far the discussion was limited to the characterisation of single layer Non–Crimp
Fabrics, whereas preforms mostly consist of a stack of layers. In practice it is observed
that the measured permeability value of a single layer of fabric differs from the
measured permeability value of a stack of layers. A plausible explanation of the
differences in the permeability values is the nesting phenomenon [28, 53]: the thickness
of a stack of fabric is smaller than the sum of the individual layer thicknesses. However,
nesting is caused by bundle undulation, whereas NCF bundles hardly undulate out
of the plane of the fabric. It could therefore easily be assumed that nesting does not
occur.
NCFs can be considered as purely uni–directional layers of fibres, oriented in different
directions. The question rises whether the permeability is affected by the stitch
threads lying in the plane of the fabric on the top and bottom face of the fabric. This
part of the stitch threads is pressed into the bundle, as shown in figure 2.32.

fibre direction

ply thickness

stitch thread stitch thread

Figure 2.32: Cross–section of the fibre bundles (light gray area) in longitudinal direction.
The dark gray areas represent the cross–section in transverse direction of the stitch threads
which are pressed into the fibre bundle.

All plies of a biaxial NCF are either a top or a bottom face, but triaxial and quadriaxial
NCFs also possess inner plies. The effect of stitch threads in the plane of the fibres
will thus be stronger – if present – for biaxial material compared to for tri– and
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quadriaxial material. On the other hand, the stitching is flattened to a maximum on
the top and bottom faces of the fabric [60]. The flattened diameter of a stitch thread
is small compared to the fibre bundle diameter and the effect of the threads on the
permeability is expected to be small.
It is not expected that the stitch threads lying on the top and bottom face of the
fabric will form a thin, but nearly continuous layer between two layers. Micrographs,
such as figure 2.9, do not suggest the existence of such a layer.
It is assumed that the SYDs form a network of flow channels. The resin flows from one
flow domain to another in overlap regions. The locations of the overlap regions are
fairly well described within a single layer (see section 2.2, (2.3) and (2.4)). The overlap
regions of the centres of the SYD exhibit a regular pattern, whereas the variation in
the lengths of the SYDs results in an irregular pattern of overlap regions found near
the tips of the SYDs.
However, the centres of the SYDs of different layers will not coincide for a stack of
multiple NCFs. A random shift in the in–plane directions x and y (∆x and ∆y) is
introduced, see figure 2.33. This results in an unknown pattern of interaction regions
between the SYDs of the facing plies of different fabric layers. A number of limiting
cases for the shift has to be analysed, as it is impossible to calculate the effect of all
possible shifts. Selecting a limited but representative set of shifts, allows to set upper
and lower bounds for the effect of stacking on the permeability of the stack compared
to the permeability of a single layer.

∆x

∆y

Figure 2.33: A random shift (∆x, ∆y) between the needle penetration locations of facing
plies of stacked layers of NCFs complicate the determination of the flow channels through
the NCF. The large dots are the centres of the SYD (solid lines) in one layer, the small dots
the centres of the SYDs (dashed lines) in a second layer.

The validity of the assumptions can be tested by analysing microscopic images
of different types of Non–Crimp Fabric. Moreover, experiments comparing the
permeability of biaxial and triaxial or quadriaxial stacks with an equal number of
individual plies and overall equal orientation of the fibres can also reveal this effect.
Note that the order of plies is different for a stack of bi–, tri– or quadriaxial layers,
due to the stacking order within a single layer of NCF.
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2.6 Conclusions on the Geometrical Model

The model of the internal geometry of an NCF, presented in this chapter, is based
on the distortions formed by the stitch threads piercing through the fabric, leading
to Stitch Yarn induced fibre Distortions (SYD). Three different types of biaxial Non–
Crimp Fabrics were analysed in relaxed and sheared configuration. The conclusions
that were drawn on the dimensions of the SYD are:

– The averaged width of the SYD mainly depends on the stitch yarn diameter.
The dimensionless width κ was defined separately for either side of the fabric,
in contrast with an earlier study. The structure of the stitch pattern differs on
either side of the fabric: the bottom face contains loops oriented in the machine
direction, the top face can have various patterns, but has no loops. This causes
a difference in the dimensions of the SYDs.

– The averaged value of κ of the top faces lies between 2 and 4, depending
on the stitch pattern and the orientation of the fibre families of the fabrics
with respect to the machine direction. The averaged value of κ of the bottom
faces is somewhat higher than the top face dimensionless width (between 3
and 5), which is attributed to the loops that are forced into the SYD. The
stitch tension appears to be the determining factor in this process. However,
an explicit relation between the dimensionless width on the one hand and the
fabric properties and the manufacturing specifications on the other hand could
not be established.

– Shear deformation of the fabric results in a decrease of the averaged width of
the SYDs. The minimum value of 2 was found to be reached at a shear angle
of roughly 30o. It was shown that the minimal value of the width is related
to the closest packing of the stitch yarns in the SYD: a further decrease of the
SYD width is obstructed by the stitch threads in the SYD. Increasing the shear
angle results in an increase of the fibre bundle compaction, but not in a further
decrease of the width of the SYDs.

– The averaged length of the SYD mainly depends on the stitch distances in
machine and in cross direction and on the orientation of the fibre families. The
dimensionless length λ of a ±45o NCF differs from the dimensionless length
of a 0o/90o NCF. The in–plane fabric compaction is maximum on the lines
connecting the neighbouring stitch penetrations in machine and cross directions.
Consequently, the half–lengths are limited to roughly the distance from the
centre of the SYD along the fibres to these lines.

– The averaged length of the SYDs appears not to be affected by shear
deformation. The two competing mechanisms occurring during a Trellis type of
shear (elongation and compaction over the diagonals of the shear frame) are in
balance, resulting in a constant length for varying shear angle.
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The dimensions of SYDs exhibit a certain variability. The amount of variation was
determined and the data was subjected to a goodness–of–fit test to determine the
type of distribution. It was found that:

– The amount of variation on the dimensionless width was equal to roughly 5 to
10% of the averaged value. A similar amount of variation was measured on the
dimensionless length. No difference was observed between the different types of
fabric concerning the amount of variation.

– The measured data exhibits a lognormal distribution. The hypothesis that the
data exhibits a lognormal distribution had to be rejected in only a small number
of cases, whereas the hypothesis of normal distribution of the data had to be
rejected for nearly half of the data sets.

– The lognormal distribution is attributed to the physical limitation on the
dimensions formed by the stitch thread: the dimensions of the SYD cannot
be smaller than the space required for the stitch threads inside the SYD.



Chapter 3

Network Flow Model

The permeability of a porous medium is often considered to be a purely geometrically
determined property. This implies that only the internal geometry of the textile
reinforcement determines the value of the permeability. The geometrical parameters
discussed in the previous chapter would consequently be sufficient to predict the
permeability. Properties such as the tow size, stitch pattern, stitch thread, but
also fibre content and fabric deformation can be accounted for in the geometrical
description.
However, there is no permeability model available yet that is able to predict the
experimentally determined permeability of a fabric. The discrepancy between model
and experiment must partly be attributed to the sensitivity for variations in the
permeability experiments, resulting in a large amount of scatter, but it partly
concerns shortcomings of the theoretical models. The currently available permeability
models (described in [16, 47, 78, 96] for example) employ an idealised description of
the internal geometry. It is observed that the permeability appears to depend on
more than just these geometrical parameters. Flow and fluid characteristics and
fluid–structure interaction also affect the resistance that the fluid experiences, apart
from the obstruction formed by the geometrical structure of the flow path. The
permeability appears to vary as a function of the injection pressure, viscosity, the
injected fluid and its interaction with the reinforcement material, the architecture
of the reinforcement and the material from which it is made (including surface
treatments) and the degree of saturation of the fibre mat.
The origin of the dependency of the permeability on these parameters is found in
the simultaneous occurrence of hydrostatic and capillary flow. The internal geometry
of the reinforcement, the fluid characteristics and the flow characteristics all affect
the balance between the hydrostatic and the capillary forces. The balance between
both flow types affects the permeability to a large extent. The difference in flow
types results in a difference in fluid velocity inside and around the fibre bundles.
Consequently, the flow front is not straight on the meso–level and micro–level scale
(see figure 2.1 for an explanation of the length scales), as schematically shown in figure
3.1. It is shown in the figure 3.1 that transverse flow from the meso–level domain (inter

51
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bundle space) to the micro–level domain (intra bundle space) or vice versa occurs in
addition to the global longitudinal flow. The direction of the transverse flows depends
on whether the meso or micro flow is dominant.

sat. region wetting region

intra bundle space

inter bundle space

(a) Hydrostatic flow dominance,
ratio intra–inter bundle space is 1.

sat. region wetting region

intra bundle space

inter bundle space

(b) Capillary flow dominance, ratio
intra–inter bundle space is 1.

sat. region wetting region

intra bundle space

inter bundle space

(c) Hydrostatic flow dominance,
ratio intra–inter bundle space is 3.

sat. region wetting region

intra bundle space

inter bundle space

(d) Capillary flow dominance, ratio
intra–inter bundle space is 3.

Figure 3.1: Potential hydrostatic and capillary flow dominance for a relatively low and a
relatively high fibre content. The horizontal arrows indicate the global flow direction, the
vertical arrows indicate the direction of the transverse flow. The light gray region refers to
the wetting region (partly filled with fluid), the dark gray area to the fully saturated region.

Hence, it appears that the route to an accurate prediction of the permeability for
an arbitrary textile reinforcement leads to a multi scale flow model. Generally, the
incorporation micro–level and meso–level flows is done in two different ways: either
using separate but complimentary models, or a fully integrated model.
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The first strategy requires knowledge on the micro–level flow along and perpendicular
to the fibre bundle. These types of flows were studied extensively by many authors
[97–102]. The effect of the fibre arrangement inside the bundle on the flow is studied
by others in addition [54–57]. The micro–level models are used as an input for the
macro–level models. However, the link between the macro– and micro–level models
is weak and it is difficult to account for the variations in the internal structure, such
as the variations in the dimensions of the SYDs discussed in chapter 2.
The second strategy certainly performs better considering the representation of the
actual internal geometry. Generally, the models implement an extended version of the
Stokes equation (Brinkman’s equation [103–105]). The main drawback is the extensive
computational effort resulting from the large number of elements. The large number
of elements is inherent to the explicit incorporation of the micro–level flow domain in
the model.
Both types of flow models can be developed up to a level where they predict the
permeability reasonably well. That is: the predicted value will be sufficiently close to
the averaged measured permeability value (maximum deviation ≈50%). None of both
types of models is able to indicate the possible deviation from the averaged value. As
mentioned, the variation in the experimentally determined permeability values partly
depends on the measurement itself, but it also depends on the internal structure of the
reinforcement. A large portion of the experimental scatter observed in woven fabrics
can be attributed to nesting, as shown by Hoes et al. [25–28]. Non–Crimp Fabrics
hardly show any nesting, but the internal structure does exhibit a certain variation,
as discussed in chapter 2. The effects of these variations on the permeability are yet
unknown. Hence, a strategy is proposed to incorporate the effect of the variability in
the internal structure of a textile reinforcement explicitly in a permeability prediction
model.
The proposed permeability prediction model is based on a channel flow approach.
The distortions (SYDs) discussed in chapter 2 act as meso–level flow channels. This
approach differs from a unit cell approach, where the entire domain is divided in
elementary units. A unit cell is the smallest unit that can represent the internal
structure. Hence, it suffices to analyse a unit cell to find the properties of the entire
structure1. The fully integrated models (for example, the model presented by Belov et
al. [105]) generally use a unit cell approach, resulting in a continuous physical domain
description, incorporating both the intra and inter bundle space. The intra bundle
space is not described explicitly in the channel flow model. This does not imply that
the unit cell approach does and the flow channel approach does not include the micro–
level flows in the bundle. A frequently applied option to incorporate micro–level flows
is the use of a ‘sink’–term [106–108]: a certain amount of fluid is assumed to flow from
the inter bundle space to the intra bundle space.
The aim of the channel flow model presented here is focussed on the effect of the
variability of the internal structure, id est a more qualitative prediction of the
permeability, whereas the exact value of the permeability is less important. The

1An example of a unit cell description of woven fabrics and how the elastic properties are derived
from the unit cells can be found in Lamers [51]. The approach to find the macroscopic flow properties
based on a unit cell approach is similar.
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model is based on the meso–level flow only. It is assumed that the hydrostatic (meso–
level) flow dominates the behaviour of the permeability for pressure driven processes,
such as RTM, which are of the main interest in this work. A meso–level based flow
analysis consequently suffices to determine the qualitative effect of the variability
found in the internal structure. Moreover, Belov et al. [24] showed that a permeability
prediction based on the meso–level flow predicts a 30% lower permeability compared to
a prediction based on a full micro–meso–level model, but qualitatively, the predictions
hardly differ. It can be concluded that a model that accurately predicts the value
of the permeability requires the inclusion of micro–level flows, especially for high
fibre contents, whereas the analysis of the variability in the permeability due to the
variability in the internal structure is more efficient if a meso–level model is employed.
Using the meso–level model presented here in conjunction with a full micro–meso–level
model results in an improved prediction of the permeability.

Summarising, the presented model consists of the two parts:

1. Meso–level flow equations describing the flow in a channel;
2. A network formulation, including a solution routine to estimate the macro–level

permeability and its variation, based on the meso–level channel flow equations.

These two topics are discussed in the next two sections, followed by a discussion on
the results obtained with the model.

3.1 Channel Flow

The general solution of the steady state flow of an incompressible Newtonian fluid
in a certain domain is based on conservation laws (mass, momentum and energy),
constitutive equations and boundary conditions [109, 110]. Here, the basic fluid
mechanics equations that are employed in the channel flow model are summarised.

3.1.1 General Fluid Mechanics

The conservation of mass, also known as the continuity equation, is given by:

Dρ

Dt
+ ρ (∇ · u) = 0, (3.1)

with ρ the density of the fluid, t the time and u the velocity of the fluid. D/Dt denotes
the material derivative, which reads (operating on the density ρ):

Dρ

Dt
=

∂ρ

∂t
+ (u · ∇) ρ. (3.2)

The conservation of momentum reads:

ρ
Du

Dt
= ∇ · σ + ρF , (3.3)
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with F the body forces acting on the fluid and σ the Cauchy stress tensor:

σ = −phI + σd, (3.4)

with ph the hydrostatic pressure, I the unit tensor and σd the deviatoric stress tensor.
The change of energy within the system by the First Law of thermodynamics:

ρ
DU

Dt
= −∇ · q + σ : ∇u + ρφ̇, (3.5)

with U the specific internal energy and q the heat flux and φ̇ a heat source. The last
term in (3.5) represents the mechanical power. The heat flux and source equal zero,
since only isothermal flow is analysed. The constitutive equation for viscous flow
of an incompressible Newtonian fluid relates the rate of deformation to the stress,
according to:

σd = 2µD, (3.6)

with µ the viscosity of the fluid and D the deviatoric rate of deformation, defined as
the symmetric part of the velocity gradient L [51]:

L = u ∇ =
1
2

(u ∇ + ∇u) +
1
2

(u∇ − ∇u) = D + W . (3.7)

The anti–symmetric part is defined as W , the vorticity. The expression for the rate
of deformation D is substituted in the constitutive relation (3.6). Subsequently,
the definition of the stress tensor (3.4) is used to rewrite the expression for the
conservation of momentum :

ρ
Du

Dt
= ∇ ·

(
−phI + 2µ

1
2
(
(u ∇) + (u ∇)T

))
+ ρF

= −∇ph + µ∇2u + ρF

(3.8)

with ∇2 the Laplace operator. This equation is known as the Navier–Stokes (NS)
equation [110, 111]. The NS–equation – and its derivatives – is also referred to as the
impulse equation of a fluid.
The flow is assumed to be stationary, since wetting is not accounted for. Consequently,

the time dependent part of (3.2) –
∂u

∂t
– equals zero2. The second term of the

material derivative – u · ∇u – also equals zero, since inertia effects are neglected for
low Reynolds numbers. There are no body forces acting on the fluid (gravity is not
accounted for; F = 0). As a result, the NS–equation reduces to the Stokes equation
for viscous flow:

∇p − µ∇2u = 0. (3.9)

The continuity equation (3.1) must be satisfied in addition to (3.9). The material
derivative Dρ

Dt equals zero, since the density is constant (incompressible fluid). The
continuity equation becomes:

∇ · u = 0. (3.10)
2The material derivative acts on u here, rather than on ρ
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The integration constants resulting from solving the differential equations (3.9) and
(3.10), depend on the boundary conditions. Both Dirichlet and Neumann conditions
(or a combination) can be applied. Dirichlet conditions apply, for example, if a flow
along (or perpendicular to) a fibre or an impermeable bundle is analysed3.

3.1.2 Solutions for a Channel Flow

The above derived general flow equations are applied to a channel. The aim is to find
a relation between the flow and the permeability of the channel4. The flow is assumed
to be one–dimensional. The solution of the axial fluid velocity u is found by solving the
impulse equation (3.3) on an infinitesimally small part of the flow domain, as depicted
in figure 3.2. The equations are derived in the cylindrical coordinates (x, r, θ) rather
than in the cartesian coordinates (x, y, z).

x

r

p 2πrδr
(
p + dp

dxδx
)

2πrδr
2π (r + δr) δx

(
τ + dτ

dr δr
)

2πrδxτ

u(r, θ)
r

δx

δr

Domain edge

Domain edge

(a) (x, r)–plane

rδr

θ

Domain edge

Domain edge

(b) (r, θ)–plane

Figure 3.2: The impulse acting on an infinitesimally small part of the flow domain. p:
pressure; τ : shear stress; (x, r, θ): cylindrical coordinates; δ: infinitesimally small part.

The total impulse on the infinitesimally small part is given by:

p πrδr −
(

p +
dp

dx
δx

)
2πrδr + 2πrδxτ − 2π (r + δr) δx

(
τ +

dτ

dr
δr

)
=

− 2πδxδr r
dp

dx
r − 2πδxδr r

dτ

dr
− 2πδxδrτ − 2πδxδr

dτ

dr
δr =

− 2πδxδr

(
r
dp

dx
+

d(τr)
dr

)
= 0.

(3.11)

3Employing a sink term [106–108], see previous discussion, is not achieved by different boundary
condition, but by a different definition of the continuity equation: ∇ · u = −S. Only then, a net
transport of fluid is possible.

4Permeability is generally only associated with porous media and not with the flow resistance of a
channel. However, the comparison is logical here, since the porous geometry is effectively represented
by a series of small channels.
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The higher order term (last term on the second line of (3.11)) is neglected to obtain
the final result. The constitutive equation (3.6) and the definition of the deviatoric
rate of deformation (3.7)5 for a one–dimensional situation is now substituted in the
part between brackets of the last equation of (3.11):

τ = −µ
du(r, θ)

dr
. (3.12)

r
dp

dx
− µ

d
dr

(
r
du(r, θ)

dr

)
= 0. (3.13)

The velocity profile u(r, θ) is solved by a double integration over r, leading to the
general solution, formulated as:

u(r, θ) =
1
4µ

dp

dx
r2 + ψ, (3.14)

∇2ψ = 0, (3.15)

with u(r, θ) the fluid velocity in axial direction, µ the viscosity and ψ an arbitrary
function. The problem is now reduced to finding the function ψ, id est solving a
homogeneous second order partial differential equation. The general solution for ψ is
[112]:

ψ = a0 + b0 ln r+
∞∑

k=1

(
akrk cos kθ + bkrk sin kθ + ckr−k cos kθ + dkr−k sin kθ

)
.

(3.16)

The coefficients in this general function depend on the shape of the domain and the
boundary conditions. Here, only the function representing the flow in a channel with
a circular cross–section is relevant. This velocity profile is represented by:

u(r, θ) =
r2 − r2

out

4µ

dp

dx
, (3.17)

with rout the radius of the duct. The flow Φ through a channel is found by integrating
the velocity profile over the cross–sectional area A of the channel:

Φ =
∫
A

u(r, θ) dA =

2π∫
θ=0

rout∫
r=0

u(r, θ)rdrdθ. (3.18)

Substitution of (3.17) in (3.18) leads to:

Φ =
πr4

out

8µ

dp

dx
. (3.19)

5the shear stress is generally referred to using the symbol τ , but sometimes also using σrθ (as
would apply in this case). The shear stress is one of the components of the deviatoric stress tensor
σd
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Comparing this to the relation between the volumetric flow and the pressure drop
proposed by Darcy (1.1), yields:

Φ =
πr4

out

8µ

dp

dx
=

K

µ

dp

dx
⇒ K =

πr4
out

8
, (3.20)

with K the permeability of the channel. Equation (3.20) is generalised for channels
with a non–circular cross–section by using the hydraulic radius. The hydraulic radius
is defined as the radius of a channel with circular cross–section, of which the flow
resistance equals the flow resistance of the channel with a non–circular cross-section
[110]. The flow resistance is related to the cross–sectional area A and the perimeter
P of the cross–section. The hydraulic radius is twice the ratio between both:

rh =
2A
P . (3.21)

The radius of the channels (either rout or rh) is typically of the order of millimetres
(O(10−3)m), hence the permeability of a single channel is O(10−12)m4.

A relation between the flow through a channel, the flow resistance (or meso–level
permeability) and the channel dimensions is established. This relation is used to
transform the measured dimensions of the SYDs, as presented in chapter 2, into the
flow resistances. The next step in the process is the prediction of a macroscopic
permeability, based on the mesoscopic permeabilities.
The permeability K is a scalar value, according to the definition in (3.20). However,
the permeability of a fabric is a second order tensor. The complete permeability
tensor K can be derived by analysing the scalar values of the permeability for
different directions of the pressure gradient (or flow). Three individual directions
of the pressure gradient are required to construct the in–plane permeability tensor
K: one to determine the orientation of the in–plane principal directions and two to
determine the value of the principal permeabilities. A set of two analyses suffices if
the principal directions are known.

3.2 Network Formulation

A single channel is considered to be insufficient to predict the permeability and its
possible variability due to the variations in the internal structure of the fabric (see
also [33]). The permeability of a single channel as a function of its dimensions can be
determined straightforwardly, but this does not lead to an estimate of the variation of a
set of connected channels with variable dimensions. The variability in the dimensions
of the channels is therefore implemented in a numerical model by analysing a network
of channels rather than a single channel. Effectively a piece of fabric is analysed
instead of only the smallest representative element of the fabric.
The network is built using the information provided by the geometrical model. The
channels are mutually connected in the interaction regions, as described in section 2.2.
The fluid can flow from one SYD to another via these interaction regions. The size and
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location of the interaction regions follow directly from the geometrical model, although
the variability in the dimensions complicates the size of the interaction regions. The
resistance observed by the fluid flowing from one interaction point to another is purely
based on meso–level flow. Flow inside the bundles is not accounted for at this stage,
since it is believed that the meso–level flow dominates the permeability behaviour
(as previously discussed, see also [105]). Moreover, accounting for micro–level flow
complicates the network model, whereas the relatively large size of the network
(compared to a single NCF unit cell) requires a relatively fast solution strategy to be
useful in practical applications.
Firstly, the methodology to create a network of flow channels, based on the SYDs is
discussed. Secondly, the fluid velocity field solution of a network applying basic flow
equations is presented.

3.2.1 From SYD to Network

The single SYDs are connected to each other, forming a network through which the
fluid flows. The channels in a single ply are not connected (they run parallel to each
other), but they are connected to the channels of neighbouring plies, with a different
orientation of the bundles and consequently of the channels. It was explained in
section 2.2 that the locations of the main interaction points between two SYD unit
cells are found in the centre of the cells, where the stitch needle penetrates the fabric
(see figure 3.3). The locations of the needle penetrations form a regular grid, since
the speed of the loom and the needle spacing are constant during manufacturing (see
also section 2.1).
Additional interaction regions are found in the tip region of the SYD channel (see
figure 3.3). The location of these interaction regions can also be calculated based
on the needle spacing A and stitch distance in machine direction B. The number
of additional interaction regions depends on the length of the SYD, but generally a
maximum of one on each tip will be found, since the dimensionless length λ approaches
a value of 2 for most cases (see section 2.3 for a more elaborate discussion).
The fluid flowing through the SYD channel experiences a resistance, depending on the
dimensions of the channel and the interaction with the boundaries. The interaction
with the boundaries can be described in various ways. The goal here is to formulate
a (network) model in which the variation of the channel dimensions is properly
incorporated in the prediction of the permeability and of its variation. The resistance
the fluid experiences in a single channel is therefore in the first place based on simple
flow equations, as were derived in section 3.1.2 and impermeable bundles. It is shown
by Ruijter [113] that it is also possible to solve the flow equations in the SYDs
by applying a finite difference technique. The solution is certainly more accurate
compared to the solution obtained with the channel flow equations. However, the
solution routine is relatively complex – hence difficult to adapt for specific situations,
such as variations in the size and location of the interaction regions – and the solution
times are longer. Consequently, the simple equations are found to be more suitable
to be used here.
Firstly, a network of SYDs is formed using the stitch parameters A and B. Secondly,
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A

B
δ

θ1 θ2

machine direction

fibre dir 1fibre dir 2

dB
p

dA
p

transverse direction transverse direction

Figure 3.3: Schematic representation of the SYD configuration of a biaxial NCF. The solid
lines correspond to the top ply SYDs, the dashed lines to the bottom SYDs. The projected
distances and the distance between the tips are indicated by dA

p , dB
p and δ respectively. The

angles of the fibre direction with respect to the machine direction are θ1 and θ2. The light
gray areas indicate the interaction regions between the SYDs of the top and bottom plies in
the centre of the SYD; the dark gray areas indicate the interaction regions in the tip regions.
The black circles point to the stitch threads penetrating the fabric.

randomly generated dimensions are assigned to the SYDs, such that the averaged size
and the variation in the dimensions correspond to the measured ones (see section 2.3).
The variation in the dimensions can be distributed to the network in a random way,
or according to a certain predefined pattern. The effect of this spatial distribution of
the dimensional variations will also be presented.
The spatial distribution of channel dimensions and resulting channel resistances
is a meso–level phenomenon. It sets bounds for the variation in the macro–level
permeability, as used in simulation software. Consequently, the type of distribution
differs from the distribution of the permeability applied in flow simulation software,
see Desplentere et al. [114] who studied the variation on the macro–level permeability
on the filling of the preform. Their approach was to assign varying permeabilities to
different predefined regions of the preform. An additional constraint in their models
is that the distribution of the permeability is smooth, since sharp transitions in the
macro–scale permeability are not likely to occur in practice.
Large SYDs can be close to small SYDs, resulting in steep transitions of the meso–
level permeability. It could even be argued that large SYDs are always surrounded by
small SYDs, based on the compaction behaviour in the plane of the fabric. However,
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the correlation between the dimensions of neighbouring SYDs was not analysed and
is hence not available.

3.2.2 A Simple Network

Initially, the network model is kept rather basic in order to be able to identify the
properties of the network model properly. The model is based primarily on the
geometrical parameters of fabric B3, the ±45o biaxial fabric from Devold (see section
2.3). The network of SYD flow channels is constructed based on four assumptions:

1. Each channel is assumed to be connected to five other channels: one in the
centre and two in each of the corners.

2. The distance between the centre connection and the edge connection regions of
the overlapping channels is equal for all channels.

3. The shape of the SYDs is assumed to be symmetrical with respect to both
in–plane axes of its local coordinate system.

4. The top face and bottom face SYD at each stitch penetration point are equal.
5. A set of channel widths is generated, such that the average and standard

deviation correspond to the measured values. The widths are randomly assigned
to the channels, or according to a certain predefined distribution.

6. An equivalent channel radius is defined based on the geometry of the SYDs (see
figure 2.10).

Sub. 1:
The length of the channels is variable, but it is assumed that the length is in all cases
large enough to connect to channels of the next row in machine direction (see figure
3.3). There is no direct connection between SYDs in the same ply, since the SYDs are
oriented parallel with respect to each other. The tips are separated by the distance δ
(see figure 3.3). It is likely that some fluid will flow from tip to tip if the distance δ
is small compared to the bundle width, but initially this flow is neglected.
A different situations applies for a 0o/90o fabric. It was shown that the tips of the
SYDs are close to each other, see figure 2.23. Channels, oriented in and perpendicular
to the machine direction, are more easily formed.

Sub. 2:
The distance between the centre interaction points and the interaction points in the
tip region is equal in all SYD unit cells. Possible irregularities in the pattern of
needle penetrations will affect this distance between the interaction points. However,
the irregularities are small (see table 2.2) and assumed to be negligible in the first
stage of the network analysis.

Sub. 3:
The origin of the local coordinate system is located in the centre of the SYD. One
axis is aligned in the longitudinal direction (hence runs from tip to tip), the second
axis is perpendicular to the first. The shape is assumed to be symmetric with respect
to these two axes.
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Sub. 4:
The dimensions of a top face SYD and a bottom face SYD are assumed to be equal
at each stitch penetration. A difference between the averaged size of the top and
bottom face was found for the fabrics B1 and B2 (see section 2.3.2). The averaged
dimensions of fabric B3 were found to be equal on either side of the fabric. The latter
situation is assumed here. Additionally, the assumption is made that not only the
averaged value, but also the values on either side of the fabric at a stitch penetration
are equal. In fact, a strong correlation between the dimensions of top and bottom
face is assumed, which is plausible, since the dimensions depend on the stitch thread.

Sub. 5:
The variability of the dimensions of the SYD channels is distributed over the entire
network according to a certain pattern. Initially, a fully random distribution is used.
However, the distribution can be adapted such that an enhanced flow path is formed.
For example, assigning the larger widths to the SYDs around the centre line of the
network, leads to a flow path around the centre line, which dominates the overall flow.

Sub. 6:
The shape of the cross–section is non–circular, as discussed in section 2.26. The cross–
section is replaced by a circular cross–section with a hydraulic radius rh, such that
the flow resistance is equal (section 3.1.2, equation (3.21)). Moreover, the channel
is wedge shaped. The hydraulic radius depends on the longitudinal coordinate (x)
in the channel (rh = r(x)). It can be shown that an equivalent, constant channel
radius rE can be derived, such that the flow resistance of a channel with a varying
cross–section equals the resistance of the equivalent channel. It is assumed that the
hydraulic channel radius changes linearly. Concave and convex quadratic functions
can also be used to describe the channel radius function, but the deviations with
respect to a linear channel radius function are small due to the high length to width
ratio of the channel. Therefore, only a linearly varying channel radius function is
used, as depicted in figure 3.4.
The linear channel radius is defined by:

r(x) =
r2 − r1

L
x + r1, (3.22)

with r1,2 the radii at the entrance and exit of the channel and L the length of the
channel. The derivation of the equivalent radius of a channel with a linearly varying
radius is presented in appendix C. The equivalent radius reads:

rE =
(

3r3
1r

3
2

r2
1 + r1r2 + r2

2

) 1
4

. (3.23)

6Note that the height is assumed to be constant, since the cavity height remains constant in Resin
Transfer Moulding (RTM). A variable cavity height, as can occur in Resin Infusion under Flexible
Tooling (RIFT), results in a variation in the layer thickness and consequently in the flow channels.
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Figure 3.4: A linearly varying channel radius is used to describe the shape of the SYD in
the plane of the fabric.

The shape of the SYDs is defined: the length L is assumed to be constant for all widths
and the width (or equivalent channel radius) is derived by employing the above derived
functions. As a direct result, the width in the centre of the SYD determines the local
width inside the SYD (for example r1 and r2 in (3.23)). The width in the centre is
also the measured width, that was discussed in chapter 2. Therefore, the term ‘width
of the SYD’ will refer to the centre width only, throughout the remainder of the text.

3.2.3 Subdividing the SYD

The SYD channels are split into four parts, separated by the interaction regions.
These parts are treated as separate sub channels. The dimensions of these sub
channels are based on the dimensions assigned to the SYD.

The transformation from an SYD to a series of flow channels and subsequently to
flow resistances is shown in figure 3.5. Three different sections are recognised: the
centre sections (I), the edge sections (II) and the dead ended sections (III). The dead
ended sections are assumed not to contribute to the flow. The blocks in figure 3.5(c)
represent the flow resistance of the channel sections in figure 3.5(b). The white spaces
between the channel sections are virtual spaces, only used to indicate the separation.

The interaction region is modelled as a point without flow resistance. The fluid
can flow freely from one SYD channel into the other channel. Only the resistance
between the interaction points is defined. This simplification limits the number of
flow resistances in the system and consequently allows for a fast analysis of large
networks. Implementation of a flow resistance in the interaction regions enables the
analysis of flow in the out–of–plane direction (see section 3.4.4).

The values of the resistances are calculated using (3.23). The distance between the
interaction points is determined using the equations for the projected distances δ, as
discussed in section 2.2 (figure 2.12, equations (2.3) and (2.4)). The distances between
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I III IIIII III

(a) Single SYD at the top face, the dashed lines indicate bottom face SYDs
connected with the top face SYD. The gray area refers to the fibre bundles. I:
centre section, II: edge section, III: dead ended section.

I III IIIII III

(b) SYD divided in separate parts between the interaction points (the white space
is fictitious). I: centre section, II: edge section, III: dead ended section.

R1
R2 R3 R4

n1 n2 n3 n4 n5

(c) Separated parts of the SYD replaced by flow resistances Ri. The thick dots (nj)
indicate the interaction points with connected SYDs.

Figure 3.5: The subdivision of an SYD into a series of four flow channels and subsequent
flow resistances. The centre, edge and dead ended section are indicated with Roman numerals.

the interaction points in case of a ±45o biaxial NCF are:

dA
p =

A√
2
; (3.24)

dB
p =

B√
2
, (3.25)

with A and B the needle spacing and the stitch distance, respectively. This is the
only configuration that was analysed. The parameters are different for other types of
fabrics (see chapter 2).

3.2.4 Analogy with an Electric System

Replacing each of the SYDs in a network as depicted in figure 3.3, by a set of four
resistances (see figure 3.5(c)), results in a network of flow resistances as shown in figure
3.6(a). The network shown is formed by the SYDs of a grid of 3×4 needle penetrations,
in cross direction (x) and machine direction (y) respectively. The stitch penetrations
are separated by the stitch distance A and B. Hence, this system represents a fabric
of 2A × 3B, which is roughly 10 × 6mm2 (table 2.1).
The light gray blocks represent the flow resistances of the centre sections of the SYD,
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the darker blocks to the edge section SYDs. The dashed lines indicate the SYDs, the
dots the centres of the SYD where the stitch threads penetrate the fabric.

x, i

y
,
j

A

B

(a) Complete network

x, i

y
,
j

A

B

(b) Reduced network.

Figure 3.6: Complete and reduced network of 2×3 basic elements (2A×3B) of flow resistance
representing a flow domain. The SYDs are indicated by the dashed lines. The centre and
edge section resistances are coloured light and dark gray respectively. The dots indicate the
location where the needle penetrated the fabric. The x–direction corresponds to the cross
direction, y–direction to the machine direction.

Each channel has a certain resistance, that can be calculated employing the equations
presented in section 3.1 and the equations (3.21) to (3.23). The resulting system of
flow equations is solved analogously to the solution of the effective resistance of an
electrical circuit consisting of parallel and serial resistances. The pressure difference
∆P and voltage drop V are corresponding variables, as are the fluid flow ϕ and

the current I. Consequently, the ratio
πr4

E(x)
8µL

corresponds with the inverse of the

electrical resistance Re, with rE the effective radius of the channel, L the length of
the channel and µ the dynamic viscosity:

ϕ =
πr4

E

8µL
∆P ↔ I =

1
Re

V. (3.26)

The reduced network, figure 3.6(b), is obtained by replacing the four small, dark gray
resistances in the tip regions of the SYDs by an effective resistance RE . The effective
resistance RE of N resistances R[n] connected in series (subscript s) or in parallel
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(subscript p) is given by:

RE,s =
N∑

n=1

R[n];

RE,p =

(
N∑

n=1

1
R[n]

)−1

.

(3.27)

The equivalent resistances of the four resistances of the tip region is straightforwardly
derived using (3.27).

RE =

(
R[1] + R[2]

) (
R[3] + R[4]

)
R[1] + R[2] + R[3] + R[4]

, (3.28)

with the resistance R[1] connected in series with R[2], R[3] in series with R[4] and the
combination R[1] − R[2] parallel to R[3] − R[4], as indicated in figure 3.7.

R [1
] R

[2]

R
[3] R [4

]

⇒ RE

Figure 3.7: The set of flow resistances formed near the interaction points at the edge of the
SYDs can be replaced by an effective resistance.

The relation between the permeability and the flow resistance of the network is derived
based on the relations between the permeabilities and the flow resistances of the
individual channels.
The flow resistances are calculated based on the dimensions of the SYD. The resistance
of the nth resistance in a system of N resistances is expressed in terms of the equivalent
radius rE , (3.23), and the length L of the channel. Subsequently, the relation between
the channel radius and the permeability K, (3.20), is employed to obtain the relation
between the resistance and the permeability:

R[n] =
8µL[n]

π
(
rE,[n]

)4 =
µL[n]

K[n]
, (3.29)

The flow resistance and permeability are inversely proportional to each other.
Effective permeabilities for channels connected in series and in parallel can be derived,
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similarly to the effective resistances defined in (3.27). Equation (3.29) is substituted
in (3.27) and the equivalent resistance is substituted for the ratio of the effective
permeability KE over the total flow length LT , resulting in the following equations:

KE,s = LT,s

(
N∑

n=1

L[n]

K[n]

)−1

;

KE,p = LT,p

N∑
n=1

K[n]

L[n]
,

(3.30)

The total flow length in the flow direction equals the sum of the channel lengths (read:
the total distance that the fluid has to flow) and consequently depends on the local
orientation of the channel with respect to the flow direction. Let θ[n] be the angle
between the nth channel and the flow direction. The lengths LT,s and LT,p are then
given by:

LT,s =
N∑

n=1

L[n] cos θ[n];

LT,p = L[n] cos θ[n] n ∈ [1..N ].

(3.31)

Note that here the absolute value of the angle θ[n] is equal, if all channels are connected
in parallel with each other. The equations reduce, if all channels have the same length
L, to:

LT,s = L
N∑

n=1

cos θ[n];

LT,p = L cos θ[n] n ∈ [1..N ],

(3.32)

Substituting (3.32) into (3.30) leads to:

KE,s =
N∑

n=1

cos θ[n]

(
N∑

n=1

1
K[n]

)−1

;

KE,p = cos θq

N∑
n=1

K[n] q ∈ [1..N ].

(3.33)

These relations are used to derive the equivalent permeability of the four edge sections
depicted in figure 3.7, similar to the expression for the effective resistance (3.28). The
effective permeability KE , using |θi| = π

4 in (3.32), is found to be equal to:

KE = 2
√

2
(

K[1] K[2]

K[1] + K[2]
+

K[3] K[4]

K[3] + K[4]

)
. (3.34)
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Effect of Variability The dimensions of the SYDs – and consequently the channel
radii – are not constant in the network, but exhibit a certain variation. This variation
corresponds to the measured variation in the dimensions of the SYD, as was explained
in section 3.2.2. The possible effect of the variation in the dimensions is analysed here.
The flow resistance of the channel sections is inversely proportional to r4

E , see (3.29).
Let δr be a variation in the channel radius, with respect to the mean channel radius
r̄E of all channels. Hence, it is found that:

RE ∼ 1
(r̄E + δr)4

=
1

r̄4
E

(
1 + δr

r̄E

)4 =
1
r̄4
E

1(
1 + δr

r̄E

)4 . (3.35)

The last term of the equation is approximated by a Taylor expansion, according to:

1(
1 + δr

r̄E

)4 ≈ 1 − 4
(

δr

r̄E

)
+ 10

(
δr

r̄E

)2

− 20
(

δr

r̄E

)3

+ 35
(

δr

r̄E

)4

+ O
((

δr

r̄E

)5
)

.

(3.36)
Suppose that the system consists of N flow channels, connected in a series. The
effective flow resistance is then calculated using (3.27). It is also possible to determine
the mean flow resistance R̄E , using (3.35) and (3.36):

R̄E ∼ 1
r̄4
E

(
1 − 4

(
δr

r̄E

)
+ 10

(
δr

r̄E

)2

− 20
(

δr

r̄E

)3

+ 35
(

δr

r̄E

)4
)

=

1
r̄4
E

(
1 − 4

(
δr

r̄E

)
+ 10

(
(δr)2

r̄2
E

)
− 20

(
(δr)3

r̄3
E

)
+ 35

(
(δr)4

r̄4
E

))
.

(3.37)

This equation shows how the variation in the averaged flow resistance depends on the
variation in the channel radii. The averaged flow resistances cannot be based on the
averaged channel radii. The variation has to be accounted for as well. The numerators
in the fractions correspond to the central moments of the set of channel widths, (see
appendix B, equation (B.7)), since δr is defined as the variation with respect to the
mean value. The numerator of the first fraction (the first central momentum) equals
zero by definition. The second numerator equals the variance of the mean channel
radii. The third numerator corresponds to the skewness and equals zero for a normal
distribution7. However, a lognormal distribution was found for the distribution of the
SYD dimensions and consequently for that of the equivalent channel radii (see section
2.3). Hence, this term does not vanish. The last fraction is the kurtosis, divided by
r̄4
E . Higher order central moments can be accounted for, but do not have a specific

meaning.
Equation (3.37) applies for a serial connection of the flow resistances. A similar
exercise can be done for a system in which the flow resistances are connected in
parallel. However, it suffices at this point to note that the averaged flow resistance

7In general: all fractions with an uneven power drop in case of a distribution that is symmetrical
around its mean value.
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of a network is not only affected by the averaged channels dimension, but also by the
(type of) distribution of the channel dimensions.

An estimate can be made of the maximum and minimum flow resistance of the network
as shown in figure 3.6, based on the variation in the channel dimensions. A pressure
gradient in the machine direction is applied8.
It is assumed that the permeability is dominated by the centre sections of the SYDs,
if the flow is in machine direction, the y direction in figure 3.6. The permeability of
these channel sections is significantly larger (see (3.23)) than the effective permeability
of the end sections of the SYD (here the effective permeability KE , defined in (3.34)).
Moreover, the pressure gradient perpendicular to the flow direction (which is parallel
to the effective flow resistance) is zero or relatively small. The contribution to the
overall permeability is therefore small. The neglect of the flow in the edge sections of
the SYDs allows solving the effective resistance of the system directly.
The variation of the SYD widths is not randomly in this case, but it is assumed to
vary between the minimum and maximum SYD width. A linear increase or decrease
of the width is assumed either in machine (y) or cross (x) direction, as depicted in
figure 3.8. The size of the resistance corresponds to the relative size of the SYDs.

x, i

y
,
j

A

B

(a) Parallel to flow direction.

x, i

y
,
j

A

B

(b) Perpendicular to flow direction.

Figure 3.8: Schematic representation of the two limiting cases. The size and colour of
the resistances correspond to the magnitude of the width of the SYD. The dots indicate the
location where the needle penetrated the fabric. x: cross direction, y: machine direction. The
pressure gradient is applied in the machine direction.

The width is assumed to remain constant in the other direction than the direction in
which the linear variation is applied. The maximum flow resistance is found if the

8see also the remark at the end of section 3.1.2; the machine direction and cross direction are
assumed to correspond with the principal directions. The derivation presented below is similar if a
pressure gradient in cross direction is applied
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variation of the widths is parallel to the flow direction. The small channels become
the bottleneck. The minimum flow resistances is found if the widths are constant in
the flow direction. The efficiency of the channels is maximal in that case, since there
are no bottlenecks obstructing the maximal flow.
The lower and upper bound permeabilities are compared to the permeability of a
network that has constant channel radii. The permeability of a network with a
constant SYD width is referred to as the nominal permeability.

Nominal Permeability The nominal equivalent permeability Knom
ET

for a network
with N ch

x × N ch
y equally sized channels is derived using the effective resistance KE ,

defined in (3.34). The channel permeabilities K[i] equal Kch, the permeability of a
channel with averaged radius r̄E :

Knom
ET

=
Nch

x /2∑
i=1

⎛⎜⎝N ch
y

⎛⎝Nch
y /2∑
j=1

1
2
√

2Kch

⎞⎠−1⎞⎟⎠ =
N ch

x√
2

Kch. (3.38)

Lower Bound The next step is to define individual channel permeabilities, based
on the dimensions of the SYD. The equivalent radius r[i,j] of the SYD at location
[i, j] in the network (the dots in figure 3.8), is defined relative in size to the mean
equivalent radius r̄E :

r[i,j] = a[i,j]r̄E . (3.39)

Subsequently, the individual channel permeabilities K[i,j], defined by (3.20) can be
derived as:

K[i,j] =
πr4

[i,j]

8
=

πa4
[i,j]r̄

4

8
= a4

[i,j]K
ch (3.40)

Substitution of (3.40) in (3.34) leads to an expression for the equivalent permeability
of a set of four SYD channels KE,[i,j] connected as depicted in figure 3.7:

KE,[i,j] = 2
√

2

(
a4
[i,j]a

4
[i,j+1]

a4
[i,j] + a4

[i,j+1]

+
a4
[i+1,j]a

4
[i+1,j+1]

a4
[i+1,j] + a4

[i+1,j+1]

)
Kch. (3.41)

The coefficients a[i,j] are related to the width of the SYDs and only depend on the
coordinate in flow direction (here the machine direction, see figure 3.8). The width of
the domains is determined in the centres of the SYDs and the SYDs are assumed to be
symmetric and equal at top and bottom face (see section 3.2.2). Consequently, the four
flow resistances connected to the SYD centre are equal, leading to two conventions:

a[i,j] = a[i+1,j] i ∈ [1..N ch
x ] j ∈ [1..N ch

y ];
a[i,2j] = a[i,2j+1] i ∈ [1..N ch

x ] j ∈ [1..N ch
y /2 − 1]. (3.42)

The value of the coefficients (a[i,j]) is based on a linear decrease (or increase) of the
width of the channels (b[i,j]) in flow direction. The maximum and minimum widths
of the channels are equal to the averaged value plus respectively minus twice the
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standard deviation, based on a lognormal distribution of the SYD dimensions (σln,
see section 2.3):

bmax = b̄ · e+2σln

bmin = b̄ · e−2σln
(3.43)

The factor 2 roughly equals the statistical value of a student–t distribution with a
95% significance level and 25 or more degrees of freedom (number of SYD widths
here) [89], id est:

bmin ≤ b ≤ bmax (3.44)

applies for 95% of the channel widths b, for a randomly generated set with averaged
value b̄ and standard deviation σln. The function describing a linear decrease of the
channel widths, over the domain and in the machine direction, is given by:

b[i,2j−1] = e

(
−8σln
Nch

y
(j−1)+(ln b̄+2σln)

)
j ∈ [1..N ch

y /2 + 1]. (3.45)

The equations (3.21), (3.22) and (3.23) are used to transform each width to an
equivalent channel radius r[i,j], from which a[i,j] follows via the definition in (3.40)
and (3.42).
The effective lower bound (LB) permeability KLB

ET
can then be written as:

KLB
ET

=
N ch

x N ch
y√

2

⎛⎝Nch
y /2∑
j=1

a4
[2i,2j−1] + a4

[2i,2j]

a4
[2i,2j−1]a

4
[2i,2j]

⎞⎠−1

. (3.46)

The ratio between the effective permeabilities in (3.38) and (3.46) provides an
indication for the lower bound of the permeability. The lower bound for the
permeability is depicted in figure 3.9 as a function of the relative size of the network.
A base configuration of size 2A × 3B is used (≈ 10 × 6mm2). The lower bound of
the permeability converges to roughly 40–45% of the nominal permeability, equation
(3.38), for the measured averaged value and standard deviation of fabric B3 (see
section 2.4).

Upper Bound The upper bound is found by following the same procedure but
applying a different definition for the coefficients a[i,j], based on a linear decrease of
the channel widths in the direction perpendicular to the flow direction (id est in x
direction, figure 3.8). The conventions for a[i,j] read in this case:

a[i,j] = a[i,j+1] i ∈ [1..N ch
x ] j ∈ [1..N ch

y ];
a[2i,j] = a[2i+1,j] i ∈ [1..N ch

x /2 − 1] j ∈ [1..N ch
y ]. (3.47)

The effective upper bound permeability KUB
ET

of the network is then found to be equal
to:

KUB
ET

=
√

2Kch

⎛⎝a4
[1,j]

2
+

Nch
x /2∑
i=1

a4
[2i,j] +

a4
[Nch

x ,j]

2

⎞⎠ j ∈ [1..N ch
y ]. (3.48)
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Figure 3.9: The upper and lower bound for the normalised permeability in machine direction
of a network with a linearly decreasing width of the SYDs (perpendicular and parallel to the
flow direction, respectively) versus the relative size of the network (base size 2A × 3B). The
permeability is normalised on the permeability of a network with equally sized SYDs.

Note the different treatment of the coefficients a[1, j] and a[Nch
x ,j]: the flow is smaller

here due to the presence of the domain boundary. Only two channels are connected
to each SYD centre, instead of four as in the other SYD centres (see figure 3.6).
The relative upper bound of the flow resistance ((3.48) divided by (3.38)) is plotted
in figure 3.9. The upper and lower bound deviate by a roughly equal relative amount
from the nominal permeability (3.38): the upper bound is approximately 45–50%
higher, whereas the lower bound is approximately 40–45% lower. Note that the
permeabilities can vary by a factor three due to the variations in the SYD widths.
The effect of the variation can hence be considered as significant.

Anisotropy The network exhibits an anisotropy by definition: the fluid can flow
relatively easily through the large channels connected to each other in the centres of
the SYDs (light gray resistances in figure 3.6). The edge channel sections, connecting
the edges of neighbouring SYDs (dark gray resistances in figure 3.6, see also section
3.2.3), are much smaller and consequently their permeability is much lower (see
(3.20): K ∼ r4). However, the fluid must use these channels if the flow direction
is altered from machine direction to the cross direction (from y to x in figure 3.6).
The anisotropy is estimated by considering a small network of N ch

x ×1 elements and a
flow in the cross direction (figure 3.10(a)). This results in an estimate of the equivalent
permeability in the cross direction (K90

ET
). Subsequently it is compared to a network

of 1 × N ch
y elements and a flow in the machine direction (figure 3.10(b)), resulting

in an estimate for the permeability in the machine direction (K0
ET

). The anisotropy
is defined as the ratio K90

ET
over K0

ET
. Note that this is only valid if K0 and K90

are oriented in the principal directions which is assumed to be the case here. This
assumption is based on the (symmetrical) structure of the network.
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x × 1 = 5 × 1, flow in cross direction.
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x = 1 × 6, flow in machine direction.

Figure 3.10: The two different flow situations: flow in cross direction and flow in the
machine direction of the fabrics. The gray area is the flow area used to determine the
equivalent permeabilities. Note that the machine and cross direction in both figures are rotated
90o with respect to each other.

The first network consists of a series of alternating sets of four channels: a set of large
channels (light dark colour) is followed by a set of small channels (dark gray colour),
again followed by a set of large channels. The equivalent resistance of a set of four
channels is given by (3.41). The channel radii are based on a constant width for all
SYDs. Let r

(1)
E be the equivalent radius of the large channels, calculated using (3.23),

and r
(2)
E the equivalent radius of the small channels, calculated in the same way. The

ratio of both radii is defined as:

αr =
r
(2)
E

r
(1)
E

. (3.49)

The permeabilities are then related to each other as:

Kch,2 = α4
rK

ch,1. (3.50)

The equivalent permeabilities are calculated using (3.41) and via the equations for the
equivalent permeability of a series of flow resistances, (3.30)–(3.33), it can be derived
that:

K90
ET

=
N ch

x

2

⎛⎝Nch
x∑

i=1

(
1

2
√

2Kch,1
+

1
2
√

2Kch,2

)⎞⎠−1

=
2
√

2α4
r

1 + α4
r

Kch,1. (3.51)
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The anisotropy α0 is defined as the ratio of the permeability in transverse direction
(3.51) over the permeability in longitudinal direction (3.38) (with N ch

x = 2):

α0 =
K90

ET

K0
ET

=
2α4

r

1 + α4
r

. (3.52)

A strong anisotropy is found, as shown in figure 3.11, where the anisotropy α0 is
plotted versus the ratio r

(2)
E /r

(1)
E . It is not expected that the anisotropy is indeed

as strong as the graph indicates. The permeability in the edge sections of the
SYD is probably higher than the value based on the local dimensions of the SYD
suggests, since the separation between the bundles of neighbouring SYDs is small.
This was discussed previously in section 2.2. The separation between two SYDs in
their tip region is formed by a relatively low number of filaments compared to the total
number of filaments in a bundle. The permeability across the bundle is consequently
significantly higher than the bundle permeability, which is neglected here. The higher
permeability of the crossing filaments in the tip region enhances the flow between
neighbouring SYDs and reduces the anisotropy. The anisotropy of the network is
compared with experimental data in chapter 4.
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Figure 3.11: Anisotropy of the network model versus the ratio of the equivalent radii of the
centre and edge sections of the SYD for a network with equally sized SYDs for the entire
domain.

3.2.5 Finite Element Formulation

A finite element discretisation [115, 116] was implemented to solve the permeability
of the network. Each of the resistances of the network is treated as a two node line
element. One–dimensional elements are used, since the flow in the elements is one–
dimensional, as was shown in section 3.1.2. Each node has one degree of freedom: the
pressure p.
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The nodal network representation of the flow domain is shown in figure 3.12. A
pattern of five elements is recognised, referred to as a repetitive block. The figure
shows a set of six repetitive blocks, indicated by the dashed lines. The dimensions of
a repetitive block are A × B, id est for the studied fabrics roughly 5×2mm.
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y
,
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B

Figure 3.12: Elements (lines) and nodes (dots with corresponding numbers) representing the
network of flow channels. The dashed lines indicate the repetitive blocks of the system. The
encircled nodes correspond to the centres of the SYDs.

The fluid flow Φ in the elements of the network is given by the integral of the fluid
velocity profile u over the cross–sectional area A, as was shown in section 3.1.2:

Φ =
∫
A

u dA. (3.53)

It was shown that the continuity equation for this type of flow, states that the gradient
of velocity field equals zero (3.10). Consequently, the gradient of the flow also equals
zero:

dΦ
dx

= 0. (3.54)

The condition (3.54) can be multiplied with an arbitrary weighting function w and
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be integrated without losing its generality:∫
w

dΦ
dx

dx = 0, (3.55)

The integral form is subsequently rewritten using the chain rule of differentiation,
resulting in:

[wΦ] −
∫

∂w

∂x
Φ dx = 0. (3.56)

The constitutive equation, relating the pressure gradient to the flow, is given here
by Darcy’s law (1.1). Substitution of the constitutive equation in the integral (3.56)
yields: ∫

∂w

∂x

K

µ

∂p

∂x
dx = [wΦ]. (3.57)

Equation (3.57) still holds for the entire continuum in which it is defined. The weak
formulation is introduced as a first approximation to solve the integral equation.
The validity of (3.57) is restricted to a set of discrete points – the nodes shown in
figure 3.12. An interpolation of the pressure is employed between the nodes (hence,
(3.57) may not be satisfied exactly at all arbitrary points in the domain). Here, a
linear interpolation is employed, implying the assumption of a linear pressure drop
(read: constant pressure gradient) over the elements. Strictly taken, this applies
only for channels with a constant radius. However, a constant, equivalent radius rE

was derived in section 3.2.2. This justifies the use of linear interpolation functions
here. Higher order interpolation functions can be implemented straightforwardly in
the system, if desired. The linear element interpolation function N(x) reads:

N(x) = {1 − x, x}T
, (3.58)

with x the normalised coordinate between two adjacent nodes. The weighting
functions w are arbitrary and therefore the shape functions (3.58) can be chosen
as well, which is known as the method of Galerkin [115, 116]. Substitution of the
shape functions in (3.57) leads to:∫

∂N

∂x

K

µL

∂N

∂x
dx · p = M · p = ϕ, (3.59)

with p the vector containing the nodal pressures, ϕ the vector containing the nodal
fluxes and M the system matrix.
The finite element discretisation is implemented in Matlab c©. A direct solving
routine is employed, combined with a Jacobi–preconditioner [117] to control the
condition of the system matrix M . Details on this procedure can be found in appendix
D.
Pressure boundary conditions are applied to the network to solve the flow. A pressure
of 1 is applied at one side of the domain and a pressure of 0 is applied at the opposite
side. This results in a pressure gradient inversely proportional to the length of the
network in flow direction. The sides of the network on which the pressure conditions



3.3. Results of Simple Network 77

are set, depend on whether a flow in the machine direction or perpendicular to the
machine direction is chosen.
It is also possible to apply boundary conditions on the flow or to use a combination
of pressure and flow boundary conditions. The results do not depend on the type of
boundary conditions. Pressure boundary conditions are applied, since they result in
a rather smooth pressure gradient over the domain.
Period boundary conditions are applied on the edges perpendicular to those on which
the pressure boundary conditions are set. The nodal flows at the nodes at the opposite
side of the domain are merged. Hence, the effect of the boundary vanishes.
The overall permeability of the network is determined by applying Darcy’s law (1.1).
The total flow in the system and the calculated pressure drop equal:

Φ =
KA

µ

dp

dx
⇒ K =

µΦ
A

L

∆p

Φ =
ninlet∑
i=1

ϕ(i)

∆p =
1

ninlet

ninlet∑
i=1

p(i) − 1
noutlet

noutlet∑
i=1

p(i)

(3.60)

The number of nodes at which inlet and outlet boundary conditions are applied are
ninlet and noutlet respectively.
The permeability of the entire network, based on a set of SYDs with variable widths (id
est varying element permeabilities), is normalised on the permeability of the network
based on equally sized SYDs. The latter is referred as the nominal permeability.

3.3 Results of Simple Network

A network formulation was presented in the previous section. Some of the basic
features of such a network were discussed and the method to solve the system of flow
equations was explained. Here, a number of different networks is analysed. Several
aspects of the model are analysed, using the parameters provided by the geometrical
model presented in chapter 2. The aim is to derive appropriate parameters for the flow
model, such that the network model can represent a piece of NCF and can provide an
estimate of the averaged permeability value and the expected variability. The latter
is considered to be the most relevant, as was discussed in the introduction of this
chapter. The analyses of the flow networks addressed the following aspects:

1. The effect of the size of the SYDs.
2. The effect of the amount of variation in the SYD widths.
3. The effect of permutations of the SYD widths and newly generated sets of

dimensions.
4. The size of the network.
5. The direction of the flow.
6. The spatial distribution of the randomly generated SYD unit cell dimensions.
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7. The pressure and flow fields.
8. The statistic properties of the network permeability.

The model parameters of the network are presented in table 3.1. The parameters
are based on the geometrical parameters (either measured or specified by the
manufacturer) of the fabrics B1, B2 and B3 presented in section 2.2.2.
A program was implemented in Matlab c© to calculate the effect of the size of the
network and the number of sets of SYD widths and subsequent permutations within
each of these set (nset and npermu respectively). The steps of the program are:

1. Generate a random set of channel widths b, based on the averaged width b̄ and
the (logarithmic) standard deviation (σln).

2. Assign the channel widths according to a certain distribution to the set of
channels.

3. Generate a random permutation of the widths generated at step 1 and re–
assign the widths to the channels according to this permutation. Repeat this
step npermu times.

4. Calculate the channel permeabilities using the channel dimensions b and h
(resulting in the element permeabilities, use (3.21), (3.22)–(3.29)), see also
sections 3.2.2 and 3.2.3).

5. Generate a random permutation of the permeabilities calculated in the previous
step and re–assign the permeabilities to the channels according to this permutation.
Repeat this step npermu times.

6. Construct and solve M · p = ϕ (3.59) for the initial set and its permutations.
7. Repeat steps 1 to 5 nset times.
8. Post process the results.

Table 3.1: Model parameters used in the network of flow resistances.

Parameter value

viscosity µ [Pa·s] 30·10−3

SYD width b [m] 0.28·10−3

SYD logarithmic width bln [m] 0.26·10−3

SYD height h [m] 0.5·10−3

Logarithmic standard deviation σln [-] 0.33·10−3

Needle spacing A [m] 5·10−3

Stitch distance B [m] 2·10−3

3.3.1 Width of the SYDs

A relatively small network of 10A×15B (≈ 50×30mm2) was used to analyse the effect
of the width on the permeability of the network. The width was varied between 50%
and 150% of the measured averaged SYD width, based on a lognormal distribution
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of the data (bln = 0.26mm, see table 3.1). The permeability is normalised in the
permeability of the network with the averaged measured width. The normalised
permeability increases strongly with increasing width, as shown in figure 3.13(a). The
permeability is proportional to r4

E , according to (3.20) and (3.23). A linear relation
is found if the fourth square root of the permeability is plotted versus the variation
in width, depicted in figure 3.13(b).

0.15 0.2 0.25 0.3 0.35 0.4
0

1

2

3

4

5

bln [-]

K
N

[-
]

(a)

0.15 0.2 0.25 0.3 0.35 0.4
0

0.5

1

1.5

bln [-]

4√ K
N

[-
]

(b)

Figure 3.13: The normalised permeability for a network with constant SYD dimensions
varying from 50% and 150% of the measured averaged SYD width. A lognormal distribution
of the data is used (bln = 0.26mm). The permeability is normalised on the permeability of
the network with the mean width.

3.3.2 Amount of Variation on the SYD Widths

The effect of the amount of variation on the SYD widths is analysed by increasing the
standard deviation on the dimensions of the channels stepwise between 0 and 150% of
the maximum measured standard deviation (σln = 0.331, see table 3.1). The standard
deviation of the other fabrics (B1 and B2) is similar to the values of fabric B3 that
were used (see appendix A for the exact numbers). The data is normalised on the
network with constant channel dimensions. The normalised permeability is calculated
for various networks. The graphs in figure 3.14 show the results of a variable amount
of variation on two networks. A relatively small one, of size 10A×15B (≈ 50×30mm2)
and a relatively large one, 40A × 60B (≈ 200 × 120mm2). The larger network is in
both directions four times as large as the smaller network.
The amount of variation has a significant effect on the permeability. The total
variation due to permutations of the widths within each set (5) and newly generated
sets (5) is indicated in the figure by the error bars and found to be small compared
to the effect of the amount of variation. The effect of the amount of variation on
the permeability is also independent of the size of the network: the averaged value
decreased for both networks to roughly 70% of the nominal permeability.
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Figure 3.14: The normalised permeability as a function of the amount of variation based on
the logarithmic standard deviation (measured standard deviation: σln = 0.331). The error
bars indicate the total variation for 5 different sets of widths, permutated 5 times.

3.3.3 Different Sets of SYD Widths and Permutations

The effect of the varying element permeabilities is analysed for a constant size of the
network (again: 10A × 15B, ≈ 50 × 30mm2). Ten different sets (nset = 10) were
generated randomly, all based on the measured averaged SYD width and standard
deviation. The number of permutations npermu within each set is varied between 5
and 50.
The calculated variation in the permeability is depicted in figure 3.15. The normalised
permeability (solid diamond) and the variation (the error bars, s = 2σ√

N
, for set size N

and standard deviation σ, see appendix B) due to the permutation of the SYD widths
is plotted for all 10 sets. The averaged permeability of all sets and all permutations
is represented by the solid line.
The variation within a set does not depend on the number of permutations within each
set according to the graphs. The variation is roughly 10% of the nominal permeability.
The averaged permeability of all sets hardly depends on the number of permutations.
The permeability is affected greater by generating a new set than by applying a
permutation within an existing set, as indicated by figure 3.16. The graphs show the
variation of the ith permutation for all sets. Each data set, from which the averaged
value plus the variation is shown, contains one normalised permeability of all different
sets. The averaged value, the diamonds, are nearly constants for all data sets. The
variation, entirely caused by differences between newly generated sets, is also nearly
equal for all data sets. Consequently, it can be concluded that the variation in the
normalised permeability is mainly caused by differences between sets of SYD widths
and is hardly affected by differences (permutations of the channels) within each set.
The variation in the permeability is twice as large as the variation within a single set
(figure 3.15), id est. roughly 15% of the nominal permeability. The variation decreases
with the increasing number of sets, as expected: the variation on a set depends on
the number of elements in the set (see also appendix B).
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Figure 3.15: Variation of the normalised permeability of a network (size 10A × 15B) for a
series of 10 different sets of randomly generated SYD widths. The number of permutations
is varied between 5 and 50. The solid line represents the averaged normalised permeability.

The analysis shows that the effect of a variation on the local permeability of a network
depends largely on the specific set of widths. The (random) spatial distribution of the
randomly generated SYD widths is only responsible for a small amount of variation
in the permeability. However, the difference between two sets of randomly generated
SYD width, both with the same averaged value and standard deviation, can be as
large as 15% of the nominal permeability. The variation reduces if the number of sets
is increased, which is generally valid for randomly generated data. In practice, the
number of permeability measurements on a certain fabric are generally low, hence
possibly resulting in relatively large variation.

3.3.4 Size Dependency

The size of the network is varied to study the size dependency and to obtain a
minimum size at which the solution can be considered as size independent and a
maximum size at which the permeability can be determined with sufficient numerical
accuracy. A limited number of sets and permutations is used to avoid excessive
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Figure 3.16: Variation of the normalised permeability of a network (size 10A × 15B) for
each permutation. The number of sets is increased from 5 to 50. The solid line represents
the averaged normalised permeability.

computation times. Increasing the size of the network is expected to result in less
variation in the permeability of the entire network. A random distribution of the
channels is used here. The size of the network is varied from 4 × 6 to 80 × 120
repetitive blocks (each of size A×B) of flow channels. This corresponds to a piece of
fabric of 20 × 12mm2 for the small network, to 400 × 240mm2 for the large network.
The length–width ratio of the fabric remains constant for all analysed networks, hence
their size is expressed relative to the base configuration of 4 × 6 repetitive blocks.
Note that the number of degrees of freedom in the system increases proportional to
the square of the relative size. Let N0

i be the size of the base configuration and S the
relative size of the network. The total number of degrees of freedom Ntot is related
to the relative size of the network according to the quadratic equation:

Ntot = 3N0
1 N0

2 S2 +
(
N0

1 + N0
2

)
S + 1. (3.61)

The condition number (see also appendix D) and required solution time depend on
the number of degrees of freedom (id est the size of the system that is being solved).
Five new sets were generated for each network size (nset = 5) and five permutations
were performed on each of the sets (npermu = 5). The normalised permeability in the
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machine direction (K0
N ), as a function of the relative size of the network, is depicted

in figure 3.17. A rapid convergence to roughly 82% of the nominal permeability is
observed. The variation in the permeability is large for relatively small systems. The
permeability and the variation on it become stable if the relative size is roughly equal
to 10 in this example. This corresponds to a system of 40×60 repetitive blocks,
a piece of fabric of roughly 200×120 mm2. Generally, specimens for permeability
measurements are larger than these dimensions. This implies that a relatively stable
value of the permeability should be measured in ideal circumstances, provided that
the assumption of a random distribution of the SYDs widths is valid.
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Figure 3.17: The normalised permeability in the machine direction as a function of the
relative size of the network (× base configuration of 4A × 6B) for a pressure gradient
perpendicular to the machine direction. Five different sets of dimensions and five
permutations per set are calculated for each set. The error bars indicate the variation on the
total of 25 calculations per data point.

3.3.5 Influence of the Flow Direction

The network has a strong anisotropy, as was discussed previously in section 3.2.4. It
was concluded that the permeability strongly depends on the flow direction. Here, it
is analysed whether the variation on the permeability is also affected by the direction
of the flow. The pressure gradient is applied perpendicular to the machine direction
in this case, rather than in the machine direction (the permeability based on flow in
the machine direction is shown in figure 3.17).
The normalised permeability in the cross direction of the network (K90

N ) is plotted
versus the relative size of the network in figure 3.18 (normalisation on the nominal
permeability for a flow in the direction). The size of the network is increased up to 20
times the base configuration of 4 × 6 repetitive blocks. The normalised permeability
is hardly affected by the variation on the width of the SYDs. Only relatively small
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networks exhibit a variation of maximal 10% of the nominal permeability. A stable
solution, only a few percent below the nominal permeability, is obtained for networks
whose size is at least roughly 5 times the size of the base configuration. The
explanation is found in the constant height of the channels (read: constant thickness
of the plies). The variation is only applied on the width of the SYD, as was discussed
in section 3.2.2. The width in the edge sections is relatively small compared to the
width in the centre sections (see section 3.2.3). The equations (3.21) and (3.23) are
employed to determine the equivalent channel radius, which is subsequently used
to determine the permeability of that channel (equation (3.20)). The variation on
the hydraulic diameter is relatively small if the width is relatively small compared
to the height. The amount of variation was analysed in section 3.3.2. According
to expectations, a smaller deviation from the nominal permeability is found if the
variation in the channel permeability decreases.
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Figure 3.18: The normalised permeability in cross direction as a function of the relative size
of the network (× base configuration of 4A × 6B) for a pressure gradient perpendicular to
the machine direction. Five different sets of dimensions and five permutations per set are
calculated for each set. The error bars indicate the variation on the total of 25 calculations
per data point.

Note that this implies that the anisotropy weakens for a system with a random
distribution of SYD widths, compared to the anisotropy based on the nominal
permeabilities. The anisotropy value is roughly 20% higher than the nominal
anisotropy, if a random distribution of the SYD widths is assumed. The anisotropy
will be discussed in more detail in section 3.3.7.

3.3.6 Upper and Lower Bounds for the Permeability

Two limiting cases were defined in section 3.2.4 to estimate the lower and upper
bounds of the normalised permeability. Here, the same cases are applied on the entire
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network, id est the flow in the edge sections of the SYDs is not neglected. The widths
of the channels in the two limiting cases are based on the averaged width and the
standard deviation as measured. The two limiting cases that were defined, are:

1. a constant gradient from the minimum to the maximum width of the SYDs in
the flow direction, see figure 3.8(a);

2. a constant gradient from the minimum to the maximum width of the SYDs
perpendicular to the flow direction, see figure 3.8(b).

Note that the standard deviation of these sets does not equal the specified standard
deviation, since the widths are not generated randomly.
The maximum and minimum widths of the channels are determined using the
equations (3.43)–(3.45). The flow experiences the maximum resistance if the widths
are varied in the direction parallel to the flow and the minimum resistance if the
widths are varied in the direction perpendicular to the flow. Chains of large channels
are formed in the latter case, as can be seen in figure 3.8(b). The effect is similar to
race–tracking, but it occurs on a smaller length scale.
The normalised permeabilities in the machine direction (K0

N ) as a function of the
relative size of the network are depicted in figure 3.19. The size of the network is
varied from 4A × 6B to 40A × 60B (20 × 12mm2–200 × 120mm2).

0 2 4 6 8 10
0.4

0.6

0.8

1

1.2

1.4

1.6

S [×(4A × 6B)]

K
0 n

[-
]

Figure 3.19: Upper and lower bounds of the normalised permeability versus the relative size
of the network (base configuration: 4A × 6B), based on a linearly varying SYD width either
in the flow direction (◦) or perpendicular to the flow direction (�).

The results are equal to the results obtained in section 3.2.4 (figure 3.9), where the
upper and lower limits were estimated neglecting the flow in the edge sections of
the SYD. It is expected that the permeability of a network with an arbitrary type
of spatial distribution is bounded by the permeability of a network with a spatial
distribution in which the SYD in– or decreases linearly in one dimension.
The space between the limits is slightly larger for smaller networks. This is caused
by the larger gradient in the small networks. However, the difference is relatively
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small and the upper and lower bounds reach a constant value for a relative size of the
network of 3. This corresponds to a network of 12A × 18B (≈ 60 × 36mm2).

3.3.7 Various Spatial Distributions of SYD Widths

The effect of the type of spatial distributions is investigated by defining a number of
spatial distributions (between brackets: the name used to refer to the distribution):

1. fully random distribution of the SYD widths (‘random’);
2. decrease of the widths in the machine (y) direction (‘horizontal’);
3. decrease of the widths in the cross (x) direction (‘vertical’);
4. decrease of the widths over the diagonal of the domain (‘diagonal’);
5. decrease of the widths from the centre towards the edges (‘central outward’);
6. increase of the widths from the centre towards the edges (‘central inward’);
7. small–large–small variation of the widths in the machine (y) direction (‘central

band’);
8. large–small–large variation of the widths in the machine (y) direction (‘edge

band’).
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Figure 3.20: First four types of spatial distributions of the widths in the network.

Representative plots of the different cases are shown in figures 3.20 and 3.21.
The plots are generated using a grid of 20×30 repetitive blocks (see figure 3.12),
which corresponds to a piece of fabric of roughly 100×60mm2. The flow direction
corresponds with the vertical direction, as indicated by the arrow. The darker the
colour, the larger the channel dimension. All sets are based on the same randomly
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generated set of widths. The distributions are formed by sorting of the set of widths.
If possible, a randomisation of a subsection is applied. Consider, for example, the
horizontal distribution, depicted in figure 3.20(b): all widths of the bottom row of
SYDs are smaller than those of the row of SYDs directly above the bottom row.
The sizes are also sorted within each row, by nature of the sorting procedure in
Matlab c©. A random permutation is applied to the SYD in each row, such that
there is no undesired ordering in vertical direction. Similar randomisation procedures
were performed in other cases.
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Figure 3.21: Second four types of spatial distributions of the widths in the network.

The normalised permeability in machine direction (K0
N ) for the eight different

distributions are calculated for various network sizes, ranging from 4×6 repetitive
blocks (base configuration ≈ 20 × 12mm2) to 40×60 repetitive blocks (≈ 200 ×
120mm2). The number of sets, equal for all distributions, and number of permutations
within each set are both set to 5. The results are presented in figure 3.22.
The first observation is that the variation in the permeability due to a different spatial
distribution is much larger than the variation due to different sets of widths for a
certain distribution. Evidently, the spatial distribution is an important parameter for
the prediction of the variation in the permeability.
The random distribution (◦) and the horizontal distribution (�) are close to the lower
boundary (�, see also figure 3.19), whereas the other distributions are closer to the
upper boundary (�, see also figure 3.19). The higher level of ordering in the non–
random spatial distribution causes the tendency towards the limits. Chains of larger
channels are formed in these distributions, resulting in micro–level race–tracking.
Consequently, the overall flow is enhanced when the chains of larger channels are
mainly (or partly) oriented in the flow direction (vertical, diagonal, central and band
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Figure 3.22: The normalised permeabilities in machine direction of the eight spatial
distributions of the SYD widths as a function of the relative size of the network. The pressure
gradient is applied in the machine direction. The order of the legend corresponds with the
order of the lines. (base configuration: 4A × 6B, nset = 5, npermu = 5).

distributions), whereas the flow is slowed down when the chains are mainly oriented
perpendicular to the flow direction (horizontal distribution). This is confirmed by
changing the direction of the pressure gradient from the machine direction to the
cross direction: the normalised permeability in cross direction (K90

N ) tends towards the
lower boundary, since the chains of large channels are mainly formed in the direction
perpendicular to the flow, see figure 3.23.
The differences between the normalised permeabilities of the vertical, central and band
distributions are not significant. A variation of roughly 10% is observed. Clearly, the
amount of ordering has a strong effect on the permeability of the network.
A lower normalised permeability is expected for the central distributions, if a squarer
grid is used. Here, a rectangular grid was used. The central distribution consequently
resembles a band distribution more than desirable.
The anisotropy of the network is also affected by the variation in the network
permeability. Previously, the anisotropy α0 was defined as the ratio of the
permeability in cross direction K90

0 over the permeability in machine direction K0
0

for a network with equally sized channels (subscript ‘0’), see equation (3.52). Let
αN be the anisotropy of a network with an arbitrary spatial distribution, using the
normalised permeabilities (K0

N and K90
N ) as depicted in the figures 3.22 and 3.23, and

α the anisotropy based on the absolute permeabilities (K0 and K90):

αN =
K90

N

K0
N

;

α0 =
K90

0

K0
0

;

α =
K90

K0
.

(3.62)
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Figure 3.23: The normalised permeabilities in cross direction of the eight spatial distributions
of the SYD widths as a function of the relative size of the network. The pressure gradient
is applied in the cross direction. The order of the legend corresponds with the order of the
lines. (base configuration: 4A × 6B, nset = 5, npermu = 5).

αN =
K90

N

K0
N

=
K90/K90

0

K0/K0
0

=
α

α0
. (3.63)

The value of αn indicates whether the anisotropy is weakened (αN > 1) or
strengthened (αN < 1). The anisotropy αN equals 1 if the change of the normalised
permeability in both directions is equal. The anisotropy αN is plotted as a function
of the size of the network in figure 3.24.
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Figure 3.24: The anisotropy based on the normalised permeabilities of the eight spatial
distributions of the SYD widths as a function of the relative size of the network. The order
of the legend corresponds with the order of the lines. (base configuration: 4A×6B, nset = 5,
npermu = 5).
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The anisotropy αN is larger than one for the random and horizontal spatial
distributions, resulting in an increase of the value of α, id est a weakening of the
anisotropy (isotropic permeability: α = 1). The anisotropy is stronger for the other
spatial distributions, for which αN is smaller than 1. This also indicates that a
clustering of larger channels occurs in the non–random spatial distributions. The
flow in the direction in which the majority of the chains of large channels are oriented
(here the machine direction), increases more than the flow in the other direction. A
higher degree of anisotropy results (or a lower in case of a horizontal distribution since
then the majority of the chains is oriented in the cross direction).
The anisotropy changes least for the random distribution. A weakening of the
anisotropy of roughly 25% is observed, where a variation of 100% or more applies
for the other distributions. There is no clustering, which explains the weak effect.
However, the permeability in the cross direction is less affected by the variations in
the SYD widths, resulting in some weakening of the anisotropy.

3.3.8 Pressure Field and Flow Field

The pressures in the nodes and the flow through the elements in the network depend
on the local permeability and observation of the pressure field and flow field helps to
understand the effect of the variability in the SYD widths.
Contour plots of the distribution of the SYD widths and the nodal pressures are
presented in figure 3.25. The level of grayness indicates the relative magnitude of the
SYD width (a) and nodal pressure (b), respectively. A dark tint corresponds with
a high value, a light tint to a low value. A random spatial distribution of the SYD
widths is applied. The results are obtained with a network of 40×60 repetitive blocks.
The pressure is set to 1 at one boundary and to 0 at the opposite boundary (bottom
and top boundary in figure 3.25(a) and left hand side and right hand side boundary
in figure 3.25(b) respectively).
The maximum and minimum width of the SYDs, indicated on the colour bar, are
slightly different for both sets. A different base set of widths was used for the analysis
of both flow directions. However, both sets of widths are based on the same averaged
width and standard deviation as specified in table 3.1.
The pressure gradient differs locally, depending on the channel permeability, and
consequently on the distribution of the SYD widths. The pressure gradient applied
in the cross direction is generally smoother than the pressure gradient in the machine
direction applied on the same network. The pressure in case of a pressure gradient
in machine direction is not smooth, which is explained by the low permeability of
the edge sections of the SYDs and the consequent channelling of the flow. This is
more clearly visualised in the figures 3.26 and 3.27, which depict the flow through the
network.
The flow for a pressure gradient in the machine direction is shown in figure 3.26, the
flow for a pressure gradient in the cross direction is shown in figure 3.27. The elements
are represented by rectangular blocks. The colour of each block is proportional to the
relative magnitude of the flow in the element. The flows in a relatively large system
of 40A × 60B (200 × 120mm2) are shown.
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(a) Width distribution and nodal pressures for a pressure gradient in the machine
direction (the arrow indicates the main flow direction)
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(b) Width distribution and nodal pressures for a pressure gradient in the cross
direction (the arrow indicates the main flow direction)

Figure 3.25: Distribution of SYD widths and the nodal pressures for a random spatial
distribution of the channel widths (network size: 40A × 60B 200 × 120mm2).

The network model predicts a significant channelling effect of the flow if the pressure
gradient is applied in the machine direction. The centre sections of the SYDs are
used efficiently, but the local pressure gradient in the cross direction is low and the
permeability of the edge sections is low. Hence, the flow is nearly zero in the edge
sections and hardly any fluid is flowing from one ‘column’ of centre SYD sections to a
neighbouring one. The local pressure in the columns of centre SYD sections does not
decrease linearly over the column and differs from column to column, due to difference
in the local permeability. Consequently, the pressure gradient is not smooth.
The channelling effect is observed in all distributions for a pressure gradient in the
machine direction. The smallest channel permeability is dominating the total flow in
the chain of channels. Consequently, the flow field of the central distributions (see
figures 3.21(a) and 3.21(b)) resemble the flow field of the horizontal distribution (figure
3.20(b)) and the band distributions (figures 3.21(c) and 3.21(d)). The normalised
permeabilities of the central distributions are lower than those of the horizontal and
band distributions. Part of the relatively wider channels loose their efficiency, due to
the presence of smaller channels further in the chain.
The fluid has to pass the small edge sections if the pressure gradient is applied in the
cross direction figure 3.27. The flow is more evenly distributed. Flow paths, or meso–
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Figure 3.26: Element flows in a network of 40A×60B (200×120mm2). A pressure gradient,
indicated by the arrow, is applied in the machine direction.
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Figure 3.27: Element flows in a network of 40A×60B (200×120mm2). A pressure gradient,
indicated by the arrow, is applied in the cross direction.
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scale race–tracking, are recognisable by the chains of darker rectangles. The fluid has
more route options available to flow through the fabric. It is less confined compared
to the situation of a pressure gradient in the machine direction. The flow paths,
consisting of the centre sections of the SYDs, are surrounded by low permeability
barriers, formed by the edge sections of the SYDs. The flow paths that are formed
for a pressure gradient in the cross direction are a mixture of centre sections and edge
sections. Hence the flow is able to move more freely through the fabric, resulting in
a smoother pressure gradient.
The degree of order in the other spatial distributions is higher than the degree of
order in the random spatial distribution (in fact: no order at all). This results in a
more structured flow distribution. The local variations are smaller, since the local
permeabilities vary less.

3.3.9 Statistics on the Results

The overall permeability of the network is calculated for a number of sets and a
number of permutations within each set. An averaged permeability including an
estimation of the variation results. The averaged permeability was shown to vary
between roughly 50% and 150% of the nominal permeability, depending on the
spatial distribution of the dimensions of the SYDs. Variations of roughly 15% on the
normalised permeability were found for a random distribution. Hoes et al. [25–27]
performed a large number of measurements on glass woven fabrics and concluded that
variations between 20–30% can be expected. The variation predicted by the network
model can be considered as reasonable, compared to the experimental results of Hoes
et al., although their measurements concern a different type of reinforcement (woven
fabric versus NCF).
A second conclusion of Hoes et al. was that the measured permeability data exhibits
a normal distribution. It was shown in chapter 2 that the widths and lengths of
the SYDs exhibit a lognormal distribution. Hence, a normality test is performed
on the permeabilities predicted by the network model, to determine whether the
distribution of the data is normal or logarithmic. The number of data values equals
the number of sets multiplied by the number of permutations and is relatively limited
(25 permeabilities versus 100 SYD widths).
A Jarque–Bera goodness–of–fit test is performed on the data (see appendix B). The
skewness and kurtosis of the data is analysed and compared to the expected values
based on a chi–squared distribution. The statistical value Fs should be lower than the
critical value, otherwise the hypothesis that the data exhibits a normal distribution
has to be rejected. The value Ps indicates the significance level. A significant
difference with a normal distribution is present if Ps is lower than the significance
level (generally 5%). The outcome of the normality test for a network with a size
from 4A × 6B to 40A × 60B is presented in table 3.2. A random distribution of the
channel dimensions was applied.
The results show that the hypothesis that the linear distribution of the permeability
is normal holds for all networks (H0 = 0), despite the lognormal distribution of the
channel dimensions (compare the data in table 2.3: the hypothesis of a linear normal
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Table 3.2: The normality of the network permeabilities for various sizes of the network
and a random distribution of the channel dimensions. A Jarque–Bera normality test is used
(critical value Fc = 5.991)

normal distr. lognormal distr.
size A × B H0 Ps Fs H0 Ps Fs

4×6 0 0.33 2.20 0 0.44 1.64
8×12 0 0.66 0.83 0 0.68 0.76

12×18 0 0.62 0.96 0 0.59 1.07
16×24 0 0.44 1.64 0 0.45 1.62
20×30 0 0.57 1.12 0 0.58 1.09
24×36 0 0.58 1.09 0 0.57 1.12
28×42 0 0.73 0.62 0 0.71 0.67
32×48 0 0.63 0.91 0 0.63 0.94
36×54 0 0.67 0.80 0 0.70 0.72
40×60 0 0.47 1.51 0 0.47 1.53

distribution is rejected frequently there, H0 = 1). It is also tested whether the data
is lognormally distributed. It cannot be concluded from the data that the hypothesis
of a lognormal distribution of the permeability values is significantly better.

3.3.10 Conclusions on the Analysis of a Simple Network

The amount of variation on the permeability of the network does not depend on the
type of distribution. A similar variation around the mean permeability of each type
of distribution is found for all spatial distributions. It can therefore be concluded that
the variation on the permeability only depends on the variation on the dimensions of
the channels and on the size of the network.
The amount of variation on the permeability, using a certain spatial distribution, is
relatively small compared to the effect of the type of distribution. Consequently, it
appears to be useful to investigate a way to express the degree of order of the SYD
dimensions, in particular if the effect of fabric deformation is also accounted for (for
example implementation of the effect of shear on the order of the SYD widths).
The normalised permeability of a network tends towards the bounds, set by an
idealised linear variation of the channel widths over the domain. The more ordered
the distribution is, the more it approaches the boundary. The ordering allows the
formation of clustering of large channels. The main orientation of these clusters
determines whether the solution tends towards the upper or the lower boundary,
roughly 50% above and 40% below the nominal permeability, respectively. A random
set of widths results in a permeability of roughly 85% of the nominal permeability for
a pressure gradient in the machine direction. The permeability is hardly affected if the
pressure gradient is applied on the cross direction. This is caused by the dominance of
the edge sections in the permeability in the cross direction. This effect is not observed
for other spatial distributions.
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The analysis of the various cases showed that the network model predicts that the
permeability of a fabric can vary between 0.6 and 1.5 times the nominal permeability.
In practice this implies that permeability values can vary by a factor of 2.5. This
amount of variation is not uncommon, as will be discussed in chapter 4, where the
experimental results are presented.

3.4 Recommendations for Extended Networks

The previously presented model employed basic assumptions and basic functions to
construct a network of flow channels, see section 3.2.2. The applicability of the model
is limited to an analysis of the effects of a variation in the widths of the SYDs on the
permeability in the plane of the fabric. The model does not include:

1. more than 2 plies;
2. the stitch threads;
3. the effect of multiple layers stacked on top of each other;
4. the permeability in the out–of–plane direction of the fabric.

These topics are briefly discussed in this section.

3.4.1 Multiple Plies

The model that was presented in section 3.2.2 applies for biaxial fabrics. However,
the class of Non–Crimp Fabrics accommodates also fabrics with more than two plies
stitched together, each with their own orientation of the fibres with respect to the
machine direction9. An extension of the model to triaxial and quadriaxial fabrics
requires a renewed analysis of the location of the interaction regions. The stacking
sequences of triaxial and quadriaxial NCFs are respectively equal to [+45o/90o/-45o]
and [+45o/0o/-45o/90o], see figure 3.28.
The interaction regions in the centre of the SYDs remain. However, the interaction
regions in the edge do not exist anymore: the SYDs of the +45o ply and the -45o

ply still overlap, but are separated by either a 0o or a 90o ply. However, the edges
of the SYDs in the 0o and/or 90o plies are most likely separated by a relatively low
number of fibre filaments. This is comparable to the situation of 0o/90o biaxial fabrics
(see figure 2.23). Consequently, the flow resistance from one stitch penetration to the
neighbouring stitch penetration point in the direction along the fibre is relatively low.
The thickness of a single layer of NCF equals the sum of the ply thicknesses. The
triaxial and quadriaxial fabric are respectively 1.5 and 2 times thicker than the biaxial
fabric, given all plies consist of the same fibres. As a result, it may be necessary
to account for some flow resistance in thickness direction. This is discussed in the
following section.

9This structure is explicitly named in the term adopted by Lomov et al. [10, 60–63] who refer to
this class of fabrics as: “Multiaxial Multiply Stitched Fabrics”
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Figure 3.28: A stack of SYDs of a ±45o biaxial (a), +45o/90o/-45o triaxial and 45o/0o/
-45o/90o quadriaxial fabric. The thick solid lines refer to top face SYDs, the dotted lines to
inner ply SYDs and the thin solid lines to bottom face SYDs. The machine direction (0o) is
indicated by the arrow.

3.4.2 Stitch Thread

The SYDs are formed by the stitch threads piercing through the fabric, as explained
in chapter 2. So far, the stitch thread was not taken into account. However, the
stitch thread does affect the flow. Firstly, since it partly blocks the centre of the SYD
and secondly, since the part of the stitch thread that lies on top of the fabric forms
additional channels.

Stitch Thread in SYD The presence of the stitch yarn in the centre of the SYD
results in a locally lower permeability. Nordlund et al. [79, 80, 82] studied the effect of
the stitch thread on the permeability and concluded that the local permeability can
decrease up to 20%. The central node in the SYDs is replaced by an element, which
number of nodes corresponds to the number of elements originally connected to the
central node: a four node element replaces the centre node of the SYD in a biaxial
fabric (see figure 3.29), a six node element replaces the centre node in a triaxial fabric
and an eight node element in a quadriaxial fabric. The methodology to implement
the stitch thread element is briefly explained for a biaxial fabric, the derivation for
the other configurations is similar.
The permeability (both longitudinal and transverse) of the stitch thread is unknown
and it is hard to measure, since size of the thread is small. Moreover, the permeability
of the centre of the SYD does not equal the stitch thread permeability exactly, since
the threads (two in total, see section 2.1) do not fill the entire space. The flow
resistance is therefore estimated using the results of Nordlund et al. [79, 80, 82]. A
decrease of 20% of the permeability in the section containing a stitch thread compared
to the sections that do not contain a stitch thread, according to Nordlund et al..
The flow path through the thickness, formed by the stitch yarns, is modelled as a
cylinder with a radius rc = 2d0 (the dimensionless width of an SYD is roughly 4, see
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(a) Single centre node.
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4

(b) Four node element in centre.

Figure 3.29: A four node element replacing the centre node of an SYD. The resistance of
the element corresponds to the flow resistance of the stitch thread.

table 2.5) and with a length lc equal to the thickness of a single layer (≈ 0.5 mm). The
element matrix of this four node element is constructed using the theory presented in
section 3.2.5. The system matrix of the element in the centre of the SYD M reads:

M =
Ksy

µ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4∑
j=2

1
L[1,j]

1
L[1,2]

1
L[1,3]

1
L[1,4]

1
L[1,2]

4∑
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1
L[2,j]

1
L[2,3]

1
L[2,4]

1
L[1,3]

1
L[2,3]

4∑
j=1,j �=3

1
L[3,j]

1
L[3,4]

1
L[1,4]

1
L[2,4]

1
L[3,4]

3∑
j=1

1
L[4,j]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (3.64)

with Ksy the permeability of the centre of the SYD including the stitch yarn, L[i,j]

the distance between nodes i and j, or the distance between the channel sections
connected to the node. Consequently, the distance between two resistances of the
same SYD equals twice the stitch thread radius rc, whereas the distance between the
two resistances of different SYDs also depends on the distance in thickness direction
lc between the centres of the two plies. Note that symmetry is used: L[i,j] = L[j,i]
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and the lengths L are given by:

L[1,2] =
√

r2
c + l2c

L[1,3] = 2rc

L[1,4] =
√

r2
c + l2c

L[2,3] =
√

r2
c + l2c

L[2,4] = 2rc

L[3,4] =
√

r2
c + l2c

(3.65)

The number of degrees of freedom increases to:

Ntot = 6N1 × N2, (3.66)

which is roughly twice the number of degrees of freedom in the simple network
representing a biaxial fabric (equation (3.61)).

Stitch Thread between SYDs The stitch pattern determines the path of the
stitch yarn from one stitch penetration to another. Lomov et al. [60] presented a
coding to describe the stitch pattern by means of the steps in machine and cross
direction that are made by the stitching needles. Moreover, they describe the shape
of the stitch thread and conclude that the thread is flattened maximally for this type
of stitch thread, since the threads are small compared to the fibre bundles. The
maximum flattening can be measured in a compression test, although it should be
noted that it is not possible to perform such a compression test on a standard static
tester. Special equipment, such as the Kawabata Evaluation System for Fabric (KES-
F) equipment should be used [94]. The stitch thread is pressed into the surface of the
fabric when placed in the mould (figure 3.30, see also section 2.5).

fibre direction

ply thickness

stitch thread stitch thread
channel channel channel

Figure 3.30: Cross–section of the fibre bundles (light gray area) in longitudinal direction.
The dark gray areas represent the cross–section in transverse direction of the stitch threads
which are pressed into the fibre bundle.

Two small channels are formed on either side of the stitch thread, as indicated
by the single head arrows. Moreover, the permeability of the stitch yarn is
generally significantly higher than the permeability of the fibre bundle. Therefore,
it is recommended to combine the channels and the stitch yarn, representing the
combination by a single flow resistance in the network system. This approach reduces
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the number of additional elements in the system. No additional nodes are required to
incorporate the flow resistances in the network, in contrast to the incorporation of the
stitch thread inside the SYD. The stitch pattern is simply projected on the network.
An example of the projection of a chain knit pattern and a tricot knit pattern on a
network is presented in figure 3.31 (compare figure 3.12, which shows the elements and
nodes only). The solid lines correspond to the newly introduced elements representing
the channels formed by the stitch thread. The elements representing the SYD channels
are dashed. The dots refer to the nodes.

(a) Chain knit pattern (also pattern of
bottom face for all knit patterns)

(b) Tricot knit pattern

Figure 3.31: Projection of a stitch pattern (solid lines) on a network of flow channels (dashed
lines).

Note that there are no nodes added to the system: the new elements are connected
to already defined nodes. A number of terms is added to the system matrix M for
the additional elements. Hence, the system itself does not become larger, but the
bandwidth and consequently the required solving time increases.
The flow resistance is assumed to be equal to the flow resistance of the stitch yarn in
the centre of the SYD. The length of the channel formed by the stitch thread depends
on the pattern and the stitch distances A and B.

3.4.3 Multilayer Network

A stack of NCFs is represented by a stack of networks. The main problem is to
connect the different networks, since the stitch penetration locations of the different
networks generally do not coincide (see also section 2.5). Moreover, the orientation of
the networks can be rotated with respect to each other. This implies that the channel
sections of an SYD (see section 3.2.3) are split into two parts at those locations where
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a channel of a second layer crosses the channel section. A new node is created if
necessary. This is not always the case, as can be seen in figure 3.32. The figure shows
two examples of overlapping channels of different layers. No additional node has to
be created in the case shown in figure 3.32(a), whereas an extra node is needed if the
situation in figure 3.32(b) occurs.

(a) No new node

(b) New node

Figure 3.32: Two networks stacked on top of each other with a relative shift results in the
splitting of channel sections, either without (a) or with (b) the creation of a new node.

The shift of the stacked networks is arbitrary. Consequently, the number of possible
multilayer networks is infinite. It is sufficient for practical use to analyse a number of
cases. For example, a completely coinciding network, id est the stitch penetrations of
the different layers correspond with each other, or a network shifted exactly 1

2A and/or
1
2B with respect to each other. However, it is also recommended to analyse a network
with a randomly generated shift of the different layers. The effect of randomness can
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differ from predefined configurations, which exhibit a higher degree of order, as shown
in section 3.3.

3.4.4 Extension to a 3D-model

The simple model is not able to predict flow in the direction perpendicular to the
plane of the fabric. Two ingredients have to be added: an expansion of the network
of a single layer to the third dimension and a connection between different layers.
The first can be achieved by implementing an additional flow resistance in the centre
of the SYD, as described in section 3.4.2. The nodes 1 and 3 in figure 3.29 lie in
a different plane compared to nodes 2 and 4. The second ingredient is covered by
the implementation of the multiple layers as discussed in section 3.4.3, but now an
additional node has to be created at the location where the channel sections are
split. Consequently, this new node lies in a different plane than the node causing the
split (see figure 3.32). It is clear that the number of stitch penetrations affects the
permeability in transverse direction, as measured by Drapier et al. [81]: the more
stitch penetrations, the more channels in out–of–plane direction.
The number of degrees of freedom will increase strongly for a network model built
to analyse the flow in out–of–plane direction. It is therefore recommended to use
a network with a relatively limited number of repetitive blocks (see section 3.2.5,
figure 3.12) in a single plane. It is more important to use sufficient layers in order
to construct sufficiently long flow paths in thickness direction, in order to predict the
permeability accurately (see the discussion on the size of the network in section 3.3.4)

3.5 Conclusions on the Flow Model

The flow model that was proposed in this chapter is based on the geometrical model,
presented in chapter 2, combined with basic fluid dynamics. The flow model is based
on the geometry of a biaxial ±45o fabric. It was revealed that:

– A single SYD can be transformed to a series of four channels, with a certain
flow resistance, based on the dimensions of the flow channel.

– A network of flow resistances can be constructed, representing a collection of
SYD flow channels and hence a piece of Non–Crimp Fabric.

– The variability of the dimensions can be implemented in the model explicitly,
as the number of channels in the network is large enough to represent a certain
variability.

A qualitative analysis of the effect of the variation in the SYD dimensions on the
permeability of the entire network was performed. A quantitative analysis was not
yet performed at this stage. The permeabilities were compared to the nominal
permeability. The nominal permeability is defined as the permeability of a network
without variation of the SYD dimensions. Variation of different parameters in the
model led to the conclusions that:
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– The averaged macroscopic permeability of a network of channels does not only
depend on the averaged width of the channels and the variation on the width,
but also on the central moments (the variance, skewness and kurtosis) of the set
of SYD widths. Consequently, the analysis of a network rather than of a single
SYD is required to estimate the average permeability, as well as the variation
on it.

– The upper and lower bounds of the permeability can be estimated by ignoring
the flow in the edge sections of the SYDs if the pressure gradient is applied in
the machine direction. The fluid mainly flows through the centre sections of the
SYD, with a significantly higher permeability (K ∼ r4).

– The upper and lower bounds for a flow in the cross direction can be estimated
by ignoring the interaction between centre sections of the SYD of neighbouring
stitch penetrations in machine direction. The edge sections form the bottleneck
for the flow.

– The lower and upper bounds are found if a linear decrease (or increase) of the
widths of the SYDs is assumed respectively perpendicular and parallel to the
direction of the applied pressure gradient. The variation in the SYD widths is
according to the measured dimensions equal to 5–10% of the averaged width.
The lower bound lies roughly 40–45% below the nominal permeability, the
upper bound roughly 45–50% above the nominal permeability, both irrespective
whether the pressure gradient is in the machine or in the cross direction.

– The network exhibits a strong anisotropy. The anisotropy is stronger than the
measurements or results in the literature indicate. The low permeability in
the edge sections of the SYD is responsible for the high degree of anisotropy.
The number of fibre filaments separating neighbouring SYDs in these regions is
relatively low. It is therefore concluded that the permeability is underestimated
in the edge section of the SYDs.

– The results indicate that the amount of variation has a significant effect on
the permeability. The normalised permeability of a network with randomly
distributed SYD widths is roughly 85% for the measured standard deviation and
as low as 70% if the amount of variation is increased to 150% of the measured
variation.

– The variation of the macroscopic permeability of a network due to a random
permutation of the SYD widths is shown to be small (±5%) compared to the
variation of the macroscopic permeability introduced by a newly generated set of
SYD widths, which has the same averaged value and standard deviation (±10%
variation).

– The minimum relative size of the network to obtain a mesh independent result
is relatively low. A network of 40×80 repetitive blocks (≈200×160mm2 for the
fabric analysed here) is sufficient. Generally, the specimens for permeability
measurements are larger.
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– It is shown that the normalised permeability of a network with randomly
distributed SYD widths roughly equals 85% of the nominal permeability if
the pressure gradient is applied in the machine direction. The normalised
permeability remains nearly equal to the nominal permeability if the pressure
gradient is applied in the cross direction. The variation on the SYD dimensions
has a smaller effect on the edge sections where the width is relatively small
compared to the thickness of the ply.

– Analyses of various kinds of non–random spatial distributions of the SYD
widths revealed that the level of order, causing clustering of larger channels,
pushes the normalised permeability to either the upper or the lower bounds.
The permeability approaches the upper limit if the majority of the chains of
channels is oriented in the direction of the pressure gradient. The permeability
approaches the lower limit otherwise.

– The variation in the permeability of different distribution may result in a factor
of 2.5 between the lowest and highest permeability.

– A higher degree of anisotropy was found for all spatial distributions, except the
horizontal and random distributions for which a lower degree of anisotropy was
found. The change of the anisotropy is a direct consequence of the above–
mentioned clustering of channels, which, depending on the direction of the
pressure gradient with respect to the orientation of the chains of channels, results
in an increase or a decrease of the anisotropy respectively. The anisotropy for
the random distribution is least affected, due to the limited possibility for the
formation of chains of channels.

– It was found that the permeability of a network is normally distributed, even
though a lognormal distribution was found – and used – for the widths of the
SYDs.
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Chapter 4

Permeability Measurements

Experiments were performed in conjunction with the theoretical work. Firstly, to
compare the measuring techniques that were available and to identify the bottlenecks
of a permeability measurement. Secondly, to verify the results of the model and finally
to identify the key features that have to be implemented in the model.
A brief review on measuring the permeability is presented in section 4.1. Three
different permeability measuring tools were available to obtain permeability values of
different reinforcements. A line injection tool was present at the National Aerospace
Laboratories (NLR), a central injection tool at the Katholieke Universiteit Leuven
(KU Leuven) and a line injection tool was developed at the University of Twente
(UT). The apparatuses are presented in section 4.2. The calculation methods required
to convert the experimental data to a permeability value are discussed in section 4.3.
The three tools were used for various permeability experiments. The results are
presented in section 4.4.

4.1 Review on Permeability Experiments

Permeability measurements are known for their poor reproducibility and poor
repeatability. A large amount of scatter is reported by several authors [5, 23–31].
Moreover, large differences are observed in permeabilities of the same fabric, measured
by different institutes [32, 118]. The verdict on the repeatability and reproducibility1

of Lundström et al. [119] is more positive: they state that similar permeabilities can
be measured by different institutes. However, the same equipment was used for all
experiments and the measuring procedure was thoroughly explained to the operators
of the partners reproducing the measurements.
An important source of the scatter in permeability is the wide variation of measuring
techniques. The permeability of a reinforcement can be measured in an in–plane

1The repeatability is an indication for the amount of variation between subsequent measurement
with the same apparatus, the reproducibility is an indication of the amount of variation between
measurements performed at different locations.
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system, or in an out–of–plane device or in a system that measures the in–plane
and out–of–plane permeability simultaneously. Moreover, either the saturated or
unsaturated permeability can be measured, the range of injection pressures can be
varied and the injected fluid can be varied [120, 121]. Finally, a constant flow rate
or a constant injection pressure can be used to control the process. An overview of
which experiment is performed by whom was presented in [122].
The type of experiment and the process settings cause significant variations in the
measured permeabilities. This observation contradicts the theoretical definition of
the permeability as a purely geometric quantity. The reasons why the permeability
appears not to be a purely geometric quantity were discussed in chapter 3.
Here, it is important to recognise the influence of the type of measurement and
process parameters: results from permeability measurements without information
on the process conditions are of little significance. On the other hand, results of
measurements on the same type of fabric, but on a different machine are certainly
useful for a better understanding of the process condition dependency.
The permeability measurement itself is rather sensitive for small variations. This
also results in a large amount of scatter on the measured permeability values, as
reported in the literature (amongst others shown by Parnas [5]). The measuring
techniques are constantly developing, in particular concerning the data acquisition.
The developments in the area of process optimisation and control stimulate the
research on the automated data acquisition systems [25, 27, 123, 124]. The advantage
of automated data acquisition is not only the increased accuracy (generally a relatively
large amount of data can be evaluated), but also the strongly decreased data analysis
time. It even enables analysis of data real–time and subsequently of control actions
to be taken.
The current status of the permeability experiments is that standard permeability
measuring tools are developed with integrated data acquisition systems [124–126].
Moreover, an international benchmark project is starting up. The outcome of the
benchmark is – ideally seen – a standardised permeability measurement protocol.
The permeability measuring tool developed at the University of Twente during this
research is aimed at being used in the benchmark project.

4.1.1 Permeability Measuring Equipment

In–plane permeability measurements are more common than out–of–plane measurements.
The flow in thickness direction of the preform is often regarded as negligible. This
simplification can be justified for products with a small thickness compared to the
in–plane dimensions. The flow in the mould will be approximately a two–dimensional
flow. However, the increasing application of RTM for structural parts has led to
thicker components, in which the through thickness flow cannot be neglected [2].
Consequently, knowledge of the through–thickness permeability of fabrics is receiving
an increasing amount of attention.
Another field in which knowledge on the through–thickness permeability is needed
is the field of the infusion technologies [127–132]. The resin is generally injected
through a transport medium on top of the preform, after which the resin impregnates
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the preform through the thickness. The injection time is reduced significantly, since
the effective injection length is short compared to the in–plane dimensions of the
product.
Few fully three–dimensional permeability measurements are reported in the literature.
The only applicable injection strategy is the radial injection strategy. The main
problem is the visualisation of the flow front, which cannot be done by direct visual
observation. Ahn et al. [133] and Nedanov et al. [134] use the patented SMART
weave sensor system [135, 136]. Saouab et al. [137] use X–ray spectography to obtain
information on the position of the fluid inside the mould. These techniques either
are limited to be applied for non–conductive materials, or require relatively expensive
equipment. It was therefore decided to measure the in–plane permeability and the
out–of–plane permeability in separate measurements in the current research project.
An out–of–plane permeability measuring device was not available at the start of the
project and was developed and tested at the University of Twente during the project
[138–141]. Only woven fabrics have been measured until now. Measurements on Non-
Crimp Fabrics have not yet been performed. However, the out–of–plane permeability
measurements carried out by Drapier et al. [81] on stitched fabrics illustrate that the
permeability in transverse direction depends on the number of stitches. This confirms
the dominant role of the channels formed by the stitch penetrations, on which the
permeability prediction model presented in the previous chapter is based.
The in–plane measurements performed in this project are, as mentioned, employing
three different test rigs at three different locations. Different measuring techniques
are applied, but it is attempted to use comparable process settings and measuring
conditions, for example by using the same test fluid (Polyol, see section H.1) and
injection pressures in the same range.

4.1.2 Comparison of In–plane Measuring Techniques

Many institutes have performed in–plane permeability experiments and have published
on it [23, 25–27, 29–31, 119, 120, 134, 142–155]. The large number of experiments and
consequently wide variety of test equipment can be reduced to two variants of in–plane
measurements:

1. Line injection
2. Radial injection

The first can be used for either wetting or saturated flow, the latter only for wetting
flow. The fluid can either be injected with a constant pressure or with a constant flow
rate. Evidently, both the flow rate and injection pressure are constant in case of a
saturated permeability measurement (a stationary situation is obtained). The typical
advantages and disadvantages of both types are presented in table 4.1.
The mathematics required to calculate the permeability from an experiment using
a linear injection strategy are fairly simple compared to those required in case of a
radial injection. There is a strong argument for the preference of a linear injection
strategy. The more complicated the mathematical procedure, the more inaccuracies
are likely to affect the results.
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Table 4.1: Typical advantages and disadvantages of the linear injection and radial injection
technique.

linear injection radial injection

+ simple mathematics
simple handling
saturated and unsaturated
permeability
stable process

full 2D permeability in single
measurement
less prone to race tracking

– single direction permeability
prone to race tracking

complicated mathematics
more extensive data acquisition
sensitive to preform inaccuracies
in the centre
only wetting permeability
larger mould deflections

The line injection measurement is generally easier to conduct. The system requirements
are lower. Firstly, less data acquisition suffices to determine the flow front position
properly. Secondly, a more stable flow is obtained, since the pressure gradient is
constant between the flow front and the injection point, whereas a steep and varying
gradient in the pressure drop occurs in case of radial injection. This can be seen by
elaborating the fluid mechanics, see appendix E. However, the reaction forces on the
mould are higher, for equally sized cavities.
The central injection method is not only sensitive to small variation near the injection
point, but also on the actual size of the injection port. A relatively large radius r0

of the injection port is better than a relatively small radius, since the fraction ln r0
rf

is smaller for larger values of r0, resulting in a lower pressure gradient. This causes
practical problems, related to the size of the rig and the circular cut that has to be
made in the fabric right above the injection port.
The reaction forces on the mould are higher in the case of linear injection. The
reaction forces are obtained by integration of the pressure field over the wetted area.
However, the mould deflection may be larger for a central injection system, since the
maximum pressure is found at the injection point, id est at a larger distance from the
locations where the closing force is applied, resulting in a higher bending moment.
The main drawback of the linear injection technique is that it provides information
on the permeability in a single direction only. This direction does not necessarily
coincide with the principal direction of the material, either because the principal
direction is unknown (for example for deformed fabrics), or due to a misalignment of
the fabric in the mould. At least three separate experiments are required to obtain the
full permeability tensor. The correlation between the three individual measurements
is sensitive to small differences in the internal geometry of the three specimens and
to inaccuracies occurring during placement of the preform in the mould. Moreover,
the direction of the pressure gradient in the mould is not necessarily parallel to the
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longitudinal direction of the mould. As a result a two–dimensional flow occurs: flow
in longitudinal direction and flow in transverse direction of the mould. This effect is
shown by Loendersloot and Akkerman [118], where the line injection measurements
with the apparatus of the NLR were compared to the measurements of the multi
cavity apparatus of SiComp [30].
Another disadvantage of the linear injection technique is that race–tracking is likely
to occur. The fluid flows along the cavity edges during the entire experiment, whereas
the fluid arrives at a cavity edge only at the end of the experiment in case of a radial
injection. It is virtually impossible to cut and place the fabric such that channels
between the edges of the rectangular cavity and the fabric are not formed.
An alternative method to overcome the problems encountered when carrying out a
permeability measurement, is the use of a ring injection. This is the opposite of a
central injection: the fluid flows from the – circular – edge towards the centrally
located vent, rather than from the centre to the edge. This requires a circular mould,
with all its practical inconveniences, such as preparation of the specimen. However,
the advantages are:

– the converging flow front guarantees a low sensitivity to local variations in the
preform;

– race–tracking is no issue at all;
– low mould deflections are expected, since the maximum pressures are near the

locations where the clamping force is applied;
– the pressure gradient is rather constant for the main part of the measurement.

A rapidly changing pressure gradient is only found near the centrally located
vent, reached in the final stage of the measurement.

The last point is possibly the most important to obtain a stable and repeatable
measurement. It implies that disturbances occurring in the outer edge and mid section
of the preform have a minor effect on the overall flow. The converging flow front results
in damping of the effect of disturbances. Disturbances in the central part, where a
steep pressure gradient can cause instabilities in the flow, cannot affect the flow in
other parts of the preform anymore, whereas disturbances near the centre affect the
entire measurement in the case of central injection. The mathematics to transform
the progression of the flow front to a permeability tensor are similar to those required
for a central injection strategy.

4.2 Three Permeability Measuring Devices

A tool for in–plane permeability measurements was available at the National
Aerospace Laboratories (NLR) at the start of the project. The NLR apparatus
consists of a mould cavity of 480×200×4mm3, see table 4.2. The test fluid is injected
by an RTM machine at one end of the apparatus as a point injection into a gutter
which spans the entire width of the cavity. A line injection is created in this way.
The fluid is injected with a constant flow rate, which is controlled by adjusting the
injection pressure. The injection pressure is consequently low at the beginning of the
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injection and increases gradually during the measurement until a stationary flow is
obtained.

Two pressure transducers are placed inside the mould cavity to measure the pressure
drop during injection. The distance between both transducers is 330mm. The top
part of the mould is made of polycarbonate in order to see the progression of the
flow front. The three polycarbonate plates, stacked on top of each other, are not stiff
enough to withstand the internal pressure without exceeding the maximum allowable
deflection2. A metal frame is placed on top of the transparent plates to reduce the
deflection.

In–plane permeability measurements were also performed at the Katholieke Universiteit
Leuven (KU Leuven) during a European funded research exchange project (Marie
Curie Fellowship project HPMT–CT–2000–0030 [4]). The test rig of the KU Leuven
(second row in table 4.2) can be used to perform permeability measurements as well as
to produce composite plates. It is equipped with a pressure controlled injection unit,
a heating device and two pressure transducers inside the mould cavity. The RTM rig
consists of a rectangular mould (cavity 500×300mm2) with central injection port and
a vent on one of the short sides of the mould, see table 4.2. The top mould consists
of three acrylic plates, stacked on top of each other, to allow visual observation of the
flow front. Again, a metal frame is used to obtain the required stiffness. Different
spacers can be used, allowing cavity thicknesses of 2mm up to 6mm. The pressure is
measured near the inlet point and the mass flow is measured by weighing the resin
container. A digital video camera is mounted above the centre of the tool to capture
the flow front position during the injection.

An additional device was developed at the University of Twente (last row in table 4.2).
A new methodology was developed to reduce the time required to perform a single
measurement – consequently, a larger number of specimens can be measured – and
increase the accuracy by automated mould closing and automated data acquisition.
The rig consists of a rectangular cavity of 500×200mm2. A line injection strategy is
applied, similar to the apparatus of the NLR. The tool is equipped with six pressure
transducers, positioned parallel to the flow direction and along the centre line of
the cavity. Two flow front sensors are placed on either side of each of the pressure
transducers.

The upper mould half is mounted onto the moving part of a universal testing machine.
A thick rubber seal is used to make the mould liquid–closed. The cavity height can
be varied continuously rather than stepwise. The rubber seal can be compressed over
a certain range while still maintaining a fluid tight cavity. A minimum compression
is required to withstand a fluid pressure of roughly 2 bars. The rubber seal is used
as a fine adjustment. Various spacer frames can be used to enforce large steps in the
cavity height. A detailed description of the design is found in the bachelor thesis of
Haanappel and Van der Sligte [156].

2The allowable deflection is low (≈1% of the cavity height), due to high sensitivity of the
permeability for a variation in the fibre content.
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4.3 Calculation Methods

The data obtained during the measurements have to be transformed to a permeability
value of the reinforcement. The calculations depend on the type of injection (line or
radial) and the type of measurement (saturated or unsaturated).
Two variants of the permeability calculation are distinguished:

1. Flow front progression based calculation;
2. Flow rate based calculation.

The first can – in principle – only be applied to determine the unsaturated
permeability, whereas the second can be applied to determine the saturated as well as
the unsaturated flow. The first method is applied for the analysis of a one–dimensional
flow and of a two–dimensional flow. The second is only applied in the case of a one–
dimensional flow. The type of injection and the type of measurement applicable to
the three different rigs are listed in table 4.3. The abbreviation refers to the institute
that owns the test rig.

Table 4.3: Overview of the calculation methods and the flow type for the three different test
rigs. The abbreviation refers to the institutes owning the test rig.

1D, linear 2D, radial

method 1: unsaturated UT, NLR KU Leuven
method 2: saturated NLR, UT -

The saturated permeability can only be calculated using the permeability measuring
rigs of the NLR and the UT. The KU Leuven rig, the only one with a central
injection, is not capable of measuring the saturated permeability. The next two
sections present the methods to derive the unsaturated and saturated permeability
for a one–dimensional flow and the method to derive the unsaturated permeability
for a two–dimensional flow from the experimental data.

4.3.1 One–Dimensional Flow

The data measured in the in–plane line injection measurements are:

– The injection pressure Pinj ;
– The pressure in the cavity P ;
– The mass M of the fluid either measured at the supply point or at the outlet

(UT test rig);
– The volumetric flow rate Φ (NLR test rig);
– The flow front arrival time ti at predefined positions xi, or vice versa the position

of the flow front xi at a predefined instant ti.
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The flow length L and the cross–sectional flow area A are known from the dimensions
of the tool and/or the preform dimensions. The viscosity µ of the fluid is measured
in a separate experiment.
Darcy’s law (1.1) proposes a linear relationship between the superficial fluid velocity
u (the ratio of volumetric flow Φ and cross-sectional area A in flow direction) and the
pressure drop ∆P over the flow length L:

u =
Φ
A =

K

µ

∆P

L
, (4.1)

with K the permeability and µ the dynamic viscosity of the fluid. The flow rate is
not directly measured by the devices of the KU Leuven and the UT. The difference
between both calculation methods, mentioned previously, is found in the way the flow
rate is derived from the measured data.

Flow Front Progression Based Calculation The first method uses the signals
of the flow front sensors and can only be used for unsaturated permeability
measurements. The Darcian relation between the flow and the pressure drop (4.1) is
written in a general form:

u =
dxf

dt
=

K

µ

∆P

xf
, (4.2)

with xf the instantaneous flow front position, as defined in section 4.1.2.

xfdxf =
K∆P

µ
dt. (4.3)

Rearrangement of the variables and integration lead to a linear relation between the
injection time and the square of the injection length:

1
2
(x2

f − x2
0) =

K∆P

µ
(tf − t0), (4.4)

with tf the arrival time of the fluid at position xf . Let ∆t be the time the fluid needs
to impregnate the fabric between two flow sensors, separated by the distance ∆L.
The permeability K

(1)
u is then found to be equal to:

K(1)
u =

µ∆L2

2∆P∆t
. (4.5)

The superscript refers to the method and the subscript refers to the type of flow (u:
unsaturated, s: saturated, as will be used throughout the remainder of the text).

Flow Rate Based Calculation The second method can be used for unsaturated
as well as for saturated flow. The mass M flowing out of the resin container or flowing
through the outlet, is measured during the experiment and used to determine the mass
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flow rate ΦM . The mass flow rate results, after dividing it by the fluid density ρ, in
the volumetric flow rate:

ΦM =
dM(t)

dt
; (4.6)

Φ =
ΦM

ρ
. (4.7)

The flow rate is not constant during impregnation of the preform if a constant pressure
injection strategy is used. This is the case for the equipment of the KU Leuven and
of the UT. The NLR equipment uses a constant flow rate, resulting in a variable
pressure during the wetting stage. The derivation below applies to the case of a
constant injection pressure. The pressure gradient for a constant pressure injection
strategy is approximated by:

∂p

∂x
≈ ∆P

∆x
=

Pinj

xf
, (4.8)

with Pinj relative to the ambient pressure and the injection point located in x = 0.
The flow front position advances in time, resulting in a decrease of the pressure
gradient and consequently a decreasing flow rate. The flow rate as a function of time
during the wetting stage is derived using (4.4). Rearrangement of (4.4) leads to an
expression for the unsaturated flow rate Φu as a function of the injection time:

Φ2
u =

A2x2

(∆t)2
=

2A2K∆P

µ∆t
; (4.9)

Φu =

√
2A2K∆P

µ∆t
. (4.10)

This relation shows that the volumetric flow rate Φu is proportional to the inverse of
the square root of the time t during wetting of the preform:

Φu(t) ∼ 1√
t
. (4.11)

Substituting this result in the relation of the injected mass (M) and the mass flow
rate ΦM results in a relation for the mass as a function of the impregnation time
(bearing in mind that ΦM = ρΦ):

M(t) ∼ √
t → M(t) = au

√
t → Φu(t) =

au

2
√

t
(4.12)

A fitting procedure is employed to determine the constant au. The flow rate at a
certain arbitrary moment of the impregnation can be calculated once the function
Φu(t) is derived.
The flow rate becomes constant after the fluid completely wetted the preform.
Consequently, the injected mass M(t) is proportional to the time:

M(t) ∼ t → M(t) = ast → Φs(t) = as. (4.13)
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Note that the mass of the fluid flowing through the outlet can also be measured
in this case. Consequently, it may be necessary to introduce an offset mass M0 to
compensate for the mass of the fluid that has already passed the outlet before the
time tsat. Again, the proportionality constant as is fitted on the measured data and
the function M(t) employing a fitting procedure.
The functions M(t) and Φ(t) are stepwise, but continuous functions:

M(t) =

⎧⎨⎩ au

√
t

ast

for

for

t ≤ tsat

t > tsat

(4.14)

Φ(t) =

⎧⎪⎨⎪⎩
ρau

2
√

t

ρas

for

for

t ≤ tsat

t > tsat

(4.15)

Note that theoretically the flow rate during the wetting stage should converge to the
flow rate in the saturated stage as t → tsat. This constraint can be used in the fitting
procedure or in the determination of the start point of the saturated stage tsat.
Substitution of (4.14) in (4.1) leads to a second, in this case stepwise expression for
the 1D permeability K(2):

K(2) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
µ∆L

A∆P

ρau

2
√

t
for t ≤ tsat

µ∆L

A∆P
ρas for t > tsat

(4.16)

The two equations (4.5) and (4.16), which are derived for the calculation of the
permeability, are used simultaneously if possible. The calculated permeabilities should
be equal from a theoretical point of view, but often deviations are found. The
deviations originate firstly from measuring inaccuracies. A second source of deviations
is the validity of Darcy’s law. Darcy’s law does not account for capillary flows, for
example. Finally, the measurements will differ if the flow front is not perpendicular
to the longitudinal direction of the mould. This results in a two–dimensional flow –
as was discussed previously in section 4.1.2 – whereas the equations are derived based
on a one–dimensional flow.

Principal Permeabilities A single line injection measurement only provides
information on the permeability in the flow direction. At least three measurements
are required to obtain the principle in–plane permeabilities. The orientation of the
machine direction of the fabric with respect to the flow direction is different in each
measurement. Generally, the orientations 0o, 45o and 90o are used3. The derivation
is presented in appendix F.

3A similar approach is used to determine the local strains. Three strain gauges are used to
characterise the complete strain situation. See for example [157]
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4.3.2 Two–Dimensional Flow

The applied method to calculate the permeability in the case of a two–dimensional
flow is based on the assumption that the flow front is elliptical. The position of
the flow front is analysed at a number of time steps and elliptical coordinates are
employed to determine the permeability. The theory can be found in [122, 158–161].
An elliptical flow front is depicted in figure 4.1. It shows all the relevant parameters:

– The global coordinate system xG, generally aligned with the rig, but strictly
taken arbitrarily defined;

– The principal coordinate system xP of the ellipse, also referred to as the local
coordinate system;

– The major and minor radii r of the ellipse;
– The angle θ between the two coordinate systems;
– The translation x0 between the two coordinate systems;
– The radius r0 of the inlet;
– The position of the flow front xf .

0 xG
1

xG
2

xP
1

xP
2

r1

r2

θ

x0
1

x0
2

r0

xf

Figure 4.1: Elliptical flow front, with major and minor radii (r1, r2) in an arbitrarily defined
global coordinate system (xG

1 , xG
2 ). The principal directions of the ellipse correspond to the

local coordinate system (xP
1 , xP

2 ), rotated over an angle θ with respect to the global coordinate
system and translated over (x0

1, x
0
2). The radius of the injection point is r0 and xf is the

position of the flow front.

The mathematics can be found in appendix G. The procedure to convert the position
of the flow front in time to a permeability value is briefly discussed below:

Radii and Orientation The major and minor radii (r1, r2) of the ellipse, its
orientation θ with respect to the global coordinate system and the translation
(x0

1, x
0
2) are determined employing a least squares fit procedure. The flow front
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positions obtained from the images taken during the measurements are used for the
fit procedure. The calculated orientation of the ellipses can show changes during
the progress of the experiment, as can the translation. This can either be due to
imperfections in the preform, or be due to inaccuracies in the image processing used
to extract a set of flow front positions from the images.
Theoretically, the orientation of the ellipse is undefined for unsheared orthogonal
material (id est K1 = K2, a circular flow front) and the centre coincides exactly with
the centre of the inlet. The orientation of a sheared fabric corresponds to the bisectrix
of the smallest angle between the two fibre directions for balanced fabric (see Lai and
Young [151]). The deviation between the expected circle or ellipse and the fitted
ellipse gives an indication of the quality of the fit or indicates differences in the local
permeability of the preform.
The theory presented in chapter 3 predicts an anisotropy for unsheared fabrics. This
results in an elliptical flow front. It can also result in a rotation of the principal axes
of the permeability with respect to the machine direction of the fabric, if the stitch
pattern is not symmetric (see section 3.4.2). It is not unlikely that the anisotropy and
orientation change during shear, since the effect of the stitch pattern on the anisotropy
and the orientation can depend on the shear deformation of the fabric. This implies
that the total anisotropy does not equal a superposition of the initial anisotropy and
the shear induced anisotropy predicted by Lai and Young [151]. The same applies for
the orientation: the total orientation is the sum of the reorientation predicted by Lai
and Young [151] plus the orientation induced by the stitch pattern, which can vary
as a function of the shear angle rather than being constant. Moreover, it should be
remembered that the variability in the permeability is reflected in a variability in the
anisotropy as well.

Elliptical Coordinates A transition to elliptical coordinates is the most natural
way to solve the permeability from the flow front position (or ellipses) in time. The
continuity equation and Darcy’s law, normally written in Cartesian coordinates xP

are transformed to elliptical coordinates ξ, a procedure that is described in appendix
G. The coordinate transformation to elliptical coordinates ξ = (ξ, η) is:

xP
1 = Lf cosh ξ cos η;

xP
2 = Lf sinh ξ sin η,

(4.17)

with Lf half of the focal length4 of the (confocal) ellipse:

Lf = r0

(
α− 1

2 − α
1
2

) 1
2

, (4.18)

with r0 the radius of the inlet and α the anisotropy of the principal permeabilities K1

and K2 and the squared major and minor radii, r1 and r2 respectively:

α =
K2

K1
=

r2
2

r2
1

. (4.19)

4The focal length is the distance between the two foci of an ellipse, see appendix G.
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Applying the coordinate transformation and ignoring the contribution of the η-
coordinate, leads to a first order differential function, see appendix G. A solution
of this differential equation is:

F (ξf , η) = (ξf − ξ0)
(

sin 2ξf

4
+

ξf

2

)
− cos2 η (ξf − ξ0)2

2
+

cosh 2ξ0 − cosh 2ξf

8
+

ξ2
0 − ξ2

f

4
=

α

1 − α

K1∆P

φµr2
0

t. (4.20)

with ξf the flow front position (compare xf , the Cartesian variant), ξ0 the elliptical
approximation of the radius of the inlet (r0) and φ the porosity.
The function F (ξf , η) can be evaluated in a number of specific points, namely at the
locations xP =

{
r1, 0

}
and xP =

{
0, r2

}
. The elliptical coordinates ξ can be derived

explicitly for these (Cartesian) coordinates:

xP =
{
r1, 0

}→ ξ =

{
arccosh

α
1
4 r1

Lf
, 0

}

xP =
{
0, r2

}→ ξ =

{
arcsinh

α− 1
4 r2

Lf
,
π

2

}
,

(4.21)

The elliptical coordinates of the flow front ellipses at all available points in time
are evaluated employing (4.21). The function values of F (ξf , η) are proportional
to the time according to (4.20). The function values of F (ξf , η) based on the
experimental data do not necessarily lie on a straight line, as is shown in figure
4.2. The deviation arises from the varying anisotropy and orientation of the ellipses,
which were mentioned earlier. Moreover, the flow is unstable in the beginning of the
measurement, resulting in a non–linear behaviour of F (ξf , η) during the first seconds
of the measurement. Generally, a stable situation is obtained after 5–10 seconds.
The anisotropy α in the last function of (4.20) applies to all flow front ellipses, which
not necessarily corresponds to the value of the anisotropy calculated by the fitting
procedure. An optimisation procedure is employed to find an overall anisotropy that
fits best with the ellipse anisotropies. The anisotropy as defined in (4.19) is therefore
relaxed: α in (4.18) is substituted by an iterated anisotropy α̃ for all ellipses. The
aim of the optimisation procedure is to find an anisotropy α̃ for which the deviation
between the function values of F (ξf , η) and the straight line Ftheo(t) = a1 · t+a2 (the
straight line in figure 4.2) is minimal, with a1 the slope of the line and a2 a constant.
A least squares approximation is employed for this purpose.

Major and Minor Permeabilities The major and minor permeabilities of the
fabric are subsequently determined from the slope a1 of the fitted line:

a1 =
K1∆P

φµr2
0

α

1 − α
→ K1 =

a1φµr2
0

∆P

1 − α

α
. (4.22)

The minor permeability K2 is found by multiplying the major permeability with the
anisotropy, according to (4.19).
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Figure 4.2: The function values F (ξf , η) versus the time (�: F (ξf , η) for xP =
{
r1, 0

}
, �:

F (ξf , η) for xP =
{
0, r2

}
). The solid line indicates the fitted, straight line, that follows from

the theory. (Data from fabric B1 – Saertex ±45o)

4.4 Results

The results of the permeability experiments are presented in this section. The results
for each of the three apparatuses are discussed separately. However, it is attempted
to allow as much mutual comparison as possible, by using either the same materials
or similar process conditions.

4.4.1 Materials and Configurations

Five different fabrics were tested in total: three biaxial, a triaxial and a quadriaxial
NCF. The three biaxial fabrics (B1, B2, B3) are the same as the fabrics discussed
in chapter 2. The triaxial (T) and quadriaxial (Q) fabrics are from the same
manufacturer as fabric B3: the only difference is the number of plies and their relative
orientation. The properties of the fabrics are presented in table 4.4.

Table 4.4: Properties of the five fabrics used for the measurements (B: biaxial, T: triaxial,
Q: Quadriaxial).

B1 B2 B3 T Q

manufacturer Saertex Saertex Devold Devold Devold
areal density [kg m−2] 0.322 0.329 0.534 0.801 1.068
fibre Toray Toray Tenax Tenax Tenax

T700 50E T700 50E HTS 5631 HTS 5631 HTS 5631
fibre count [-] 12K 24K 12K 12K 12K
orientation [o] ±45 0/90 ±45 45/90/-45 45/0/-45/90
stitch PES PES PES PES PES
linear density[tex] 7.6 7.6 5 5 5
knit pattern tricot tricot/chain chain chain chain
gauge [inch−1] 5 5 5 5 5
stitch length [mm] - - 2.5 2.5 2.5
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Different configurations of the materials were measured. The number of layers was
varied for fabric B3 and the shear angle was varied for fabrics B1 and B2. An overview
of which measurement was performed where is presented in table 4.5. The fabrics B3
and T were measured at different institutes allowing a direct comparison between the
data.

Table 4.5: Overview of the measurements that were carried out on the different fabrics at
the different institutes. The first number indicates the number of layers, the second – between
brackets – the number of repeated measurements. (γ: shear angle).

B1 B2 B3 T Q
γ [o] 0 30 45 0 30 45 0 30 45 0 0

NLR 7(3) 5(3) 3(3)
KUL 1(4) 1(3) 1(3) 1(4) 1(3) 1(3) 5(3)
UT 1(5)

2(3)
4(5)

Polyol was used as a test fluid in all measurements. Polyol is the non–curing part of a
polyurethane fast cast resin and is supplied by Axson (see appendix H.1 for the data
sheet). Polyol is supplied with an additive to avoid moisture absorption by the Polyol.
However, this additive consists of particles and disturbs the flow and consequently
the permeability measurement. The additive has a higher density and sinks to the
bottom of the storage container. Only pure Polyol was used in the measurements,
either by using only the fluid in the upper part of the storage container, or by filtering
the fluid.

Polyol itself is transparent and is invisible if injected in a carbon fibre preform.
Therefore, a fluorescent (Ardrox BioPen p6f5, appendix H.2) was added to the Polyol
for the measurements with the test rig of the KU Leuven. UV–lights were used as a
light source and a box was placed on top of the mould to protect the environment of
the set–up from the UV–radiation and to eliminate disturbances of the ambient light.

The viscosity of Polyol is temperature dependent. The viscosity was measured at the
NLR with a plate–plate rheometer, using the oscillating mode (1.59 Hz) and a target
strain of 0.375. Data on the viscosity measurements of Polyol is collected in appendix
I. The viscosity of the Polyol–BioPen mixture was measured in addition and found
to be rather insensitive for the mixing ratio. The viscosity was measured using a
capillary viscometer (Schott Geräte, ref. no. 053 92, see appendix I). The time of
usage of the mixture appeared to have a stronger effect than the mixing ratio. The
increased viscosity may either be caused by water absorption by the Polyol, or by
small particles (carbon ‘dust’) in the mixture from the experiments (the fluid was not
filtered after being used). The mixture used in the experiments was: 1148.9 grams
Polyol and 51.8 grams Ardrox BioPen, which is roughly 25:1 by volume.
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4.4.2 In–Plane Measurements NLR

The NLR apparatus was introduced in section 4.1.1, table 4.2. The results acquired
with this rig are presented here.
Race–tracking between the edge of the cavity and the preform inevitably occurs in
a line injection set–up, since the edges of the fabric will show some damage such as
raffling due to the cutting and handling. Race–tracking would not be as serious
a problem if it did not result in a certain amount of 2D flow: The fluid starts
impregnating the fabric from the side. Silicon straps are applied in the edge along
the length of the cavity to avoid the race–tracking.
The RTM machine controls the fluid flow. Normally, a flow rate of approximately 15
g·min−1 is used for permeability measurements. This corresponds to a volumetric flow
of approximately 0.27·10−6 m3 s−1. The advantage of a constant flow rate is that the
pressure at the beginning of the experiment is low, resulting in a relatively stable flow
and little chance of fibre wash (fibres being pushed out of their position by the fluid
pressure). The flow rate is measured by a flow meter. The disadvantage is a more
complex control5. Consequently, the flow rate is not constant at the very beginning
of the experiment. However, experiments show that the flow becomes stable within a
short time (seconds) and can be fairly well controlled during the saturated flow.
The injection pressure increases gradually as the preform is wetted. The pressure
reaches a constant value once the entire preform is wetted. A saturated flow regime
is reached. The fluid is pumped through the preform for a certain time. The flow
rate and pressure drop are derived from the measured data, partly using a visual
interpretation of the data (to determine the moment in time at which the unsaturated
permeability is calculated).
A typical graphical overview of the measurement is shown in figure 4.3. The injection
pressure (Pinj , solid line), the pressures measured by the transducers (P1, dashed line
and P2, dash dotted line) and the flow rate (dotted line) are plotted against the time.
The results of the other measurements are presented in tabulated form in section J.1.

The point in time at which the unsaturated permeability is determined is the time
at which the fluid arrives at the second pressure sensor (tunsat). The signal of the
sensor starts to rise at that point. A stationary flow is established once the pressures
measured by both transducers reached their maximum value and remain constant.
The start time of the stationary flow tsat is indicated. The saturated permeability
can be determined by taking the pressure drop ∆Psat at any point in time between
tsat and the end of the measurement. Here the flow rate Φ and pressures drop ∆Psat

are averaged over the time span between tsat and the end of the measurement.
Three configurations of NCFs of the same manufacturer (Devold) were measured:
a biaxial, triaxial and quadriaxial fabric. The fibres and stitching (type and pattern)
are equal for the three variants, the only difference is the number of plies and their

5In fact, the pressure is controlled based on the measured flow rate, such that the flow rate remains
constant during the entire measurement. This can result in steep gradients in the applied pressure,
especially in the first seconds of the measurement. Steep gradients complicate the control, since the
pressure cannot be changed instantaneously, as is theoretically desired.
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Figure 4.3: Pressure and flow rate during the first measurement of the biaxial NCF (B3).
The time step at which the unsaturated and saturated permeability are calculated are indicated
by tunsat and tsat respectively.

relative orientation. The biaxial NCF corresponds to the fabric B3 discussed in section
2.1. The material properties of the NCFs are listed in table 4.4. The areal density
of an individual ply of the fabric equals 0.267 kg m−2, resulting in the specified areal
densities. The measurements were performed in the framework of the FALCOM
project (G4RD–CT–00694). The data is presented in the technical project reports
[32, 118].
The machine direction of the fabrics was rotated 0o, 45o and 90o with respect to the
flow direction in the test rig. This results in the permeabilities K0, K45 and K90

from which the complete permeability tensor can be constructed, if – and only if –
the pressure gradient depends on the longitudinal coordinate of the mould and hence
no flow in transverse direction occurs (see also the discussion on this in section 4.1.2).
Three measurements were performed on each configuration. It is preferable to perform
a larger number of experiments, but the available budget and amount of material were
limited in this case. The preform and fluid properties of each of the experiments are
listed in table 4.6.
It was attempted to use an equal fibre content for all three fabrics (biaxial, triaxial
and quadriaxial). This implies that the total number of plies should be equal, which
is – given the layer thickness and the height of the cavity – impossible. Spacers were
used to this end. The cavity height varies for the three types of NCF, but the fibre
contents are nearly equal.
The results of the measurements are shown in figure 4.4. The averaged measured
permeability (bars) and the maximum and minimum permeability (error bars) are
depicted. Both the unsaturated and the saturated permeability are shown (light and
dark gray fill respectively).
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Table 4.6: Preform and fluid properties for the measurements carried out at the NLR (θ:
orientation of the preform; µ: viscosity; W : preform weight; Vf : fibre content; A: cross–
sectional area).

NCF θ [o] µ [mPa·s] layers W [g] Vf [%] A [mm2]

Biaxial 0 32.7 7 344.9 344.3 344.0 56.69 660
45 31.5 344.1 344.1 341.9
90 32.7 344.9 344.3 344.0

Triaxial 0 31.5 5 370.3 370.4 369.9 56.57 680
45 31.5 369.8 370.9 370.3
90 31.5 370.0 371.1 371.6

Quadriaxial 0 32.7 3 293.0 299.7 295.5 56.57 580
45 31.5 298.1 298.1 298.1
90 32.7 297.6 297.8 297.4
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Figure 4.4: Averaged measured permeability of the biaxial (B3), triaxial (T) and quadriaxial
(Q) NCFs. The light gray bar refers to the unsaturated permeability, the dark gray to the
saturated permeability. The error bars indicate the maximum and minimum permeability of
the three measurements.

The results of the measurement of K45 are omitted for the biaxial NCFs. The
measured permeabilities are not accurate due to extremely low injection pressures for
the given constant flow of 15 g·min−1. The tabulated results (appendix J) do contain
the measured values. The measured values for K45 of the triaxial and quadriaxial
fabrics are also significantly higher than the measured K0 and K90 permeabilities.
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However, it was expected that the principal directions of the permeability tensor are
oriented parallel (K1) and perpendicular (K2) to the cross direction of the material for
the triaxial material (corresponding to the 90o layer), whereas the quadriaxial material
was expected to be isotropic. The measured values contradict the expectations
significantly. The principal directions are rotated roughly 25–40o with respect to
the direction of K0.
The permeability K45 can be estimated by assuming that the principal directions
correspond with the directions of K0 and K90 (see appendix F for a derivation):

K45 =
√

2K0K90√
(K0)2 + (K90)2

. (4.23)

Let K0 = K1 and K90 = K2. The expression (4.23) can be rewritten:

K45 =
α
√

2√
1 + α2

K0. (4.24)

with the anisotropy α as defined in (4.19). The permeability K45 equals K0 if α equals
1, which is expected for isotropic material. Similarly, it shows that a high value of
K45 (read: higher than K0 or K90) can only be found if the principal directions are
rotated with respect to the directions of K0 or K90, since the fraction in (4.24) cannot
exceed a value of one. Moreover, it is not always possible to fit an ellipse through the
three measured permeabilities if K45 is large compared to K0 and K90. See appendix
F for more details on this.
The model presented in chapter 3 does predict a strong anisotropy for the biaxial
material. However, care should be taken, prior to drawing the conclusion that these
measurements confirm the predicted strong anisotropy.
Firstly, the conclusion is too premature, since the network model does not predict a
rotation of the principal axes. It predicts that the principal axes are aligned with the
machine and cross direction. A rotation can only occur if the channels formed by the
stitch thread on top and bottom of the fabric are taken into account and if the stitch
pattern is not symmetric with respect to the machine direction (see section 3.4.2).
The chain knit pattern is symmetric with respect to the machine direction and hence
only affects the anisotropy and not the orientation of the principal directions.
Similarly, a rotation of the principal axes is not expected for a triaxial fabric with
a chain knit pattern: the direction of K1 corresponds to the direction of the fibres
in the mid ply whereas the channels formed by the stitch threads are aligned in
the machine direction. Flow enhancement in the machine direction due to the
stitch threads therefore results in a weaker anisotropy, but not in a rotation of the
principal directions. The principal directions are – and remain – oriented along and
perpendicular to the machine direction.
A second reason to doubt the conclusion that the predicted anisotropy is confirmed
by the measurements is that this amount of anisotropy is not reported by others, who
measured the permeability of similar fabrics (for example [76, 162]. Even the results
of the measurements performed by SiComp, carried out in the framework of the
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FALCOM project on exactly the same material, do not indicate a strong anisotropy
[32].
Finally, it must again be emphasised that the permeability tensor can only be derived
from the measured data if the condition of a one–dimensional flow is satisfied (see
section 4.1.2). It is strongly doubted that the pressure gradient is oriented in the
longitudinal direction of the mould (the direction in which the fluid is assumed to
flow), if an anisotropic material is placed in the mould such that neither of its principal
directions is oriented along the longitudinal direction of the mould. This was clearly
shown in a comparison between the permeability measurements of the NLR and those
of SiComp [118]. However, it cannot entirely explain the extreme deviation in the
results of the measurements of the NLR on the biaxial material. Firstly, since the
SiComp test rig also employs a line injection strategy [30], but – as mentioned – does
not confirm the extreme values. Moreover, the permeability of the 45o orientated
preform deviates more for the biaxial preform than for the triaxial preform. The
latter has a stronger anisotropy and hence a larger deviation of K45 is expected, but
this was not measured.
It is concluded that the permeabilities of the preforms oriented in the 45o direction
cannot be considered as accurate. A complete explanation for the deviations cannot
be given, but (1) there is no confirmation of others who report similar large values for
K45, (2) the network model does not predict the orientation of the principal direction
that accompanies the strong anisotropy, whereas (3) there are strong indications that
a measurement of K45 does not provide a correct value of the permeability, since the
pressure gradient is not parallel to the longitudinal direction of the mould. Additional
measurements were performed on the triaxial fabric (T) using the test rig of the KU
Leuven, which is based on a central injection strategy. The results of the comparison
between the measurements are presented in section 4.4.3.

The anisotropy of the three fabrics B3, T and Q is depicted in figure 4.5. The
anisotropy is based on the assumption that the principal directions correspond with
the directions of K0 and K90, although the results of the experiment suggest that this
is not the case. The anisotropy increases compared to the anisotropy calculated here,
if the permeability K45 is higher than the permeabilities K0 and K90. The averaged,
minimum and maximum anisotropies are found according to:

ᾱ =
K̄90

K̄0
;

αmin =
min(K90)
max(K0)

;

αmax =
max(K90)
min(K0)

.

(4.25)

Note that Kθ is an array with the permeability values of the three individual
measurements of that configuration.
The averaged anisotropy is nearly equal to one for the biaxial fabric and relatively
close to one for the quadriaxial fabric, but the variations are large (roughly 30–40%
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Figure 4.5: The averaged anisotropy of the three fabrics based on the assumption that the
principal directions correspond to the fabric directions K0 and K90. The light gray bar refers
to the anisotropy of the unsaturated permeability, the dark gray to the anisotropy of the
saturated permeability. The error bars indicate the maximum and minimum anisotropy.

for the biaxial, 25–55% for the triaxial and 40–90% for the quadriaxial). The large
amount of the scatter is a result of the absence of a correlation between the different
measurements.

4.4.3 In–Plane Experiments KU Leuven

Two biaxial fabrics and one triaxial fabric were used for the measurements at the
KU Leuven (see table 4.2 for a description of the test rig). Both biaxial fabrics
are Saertex biaxial Non–Crimp Fabrics (B1 and B2), the triaxial fabric (T) is
the Devold NCF that was also measured with the NLR test equipment. The
specifications of the materials are presented in table 4.4. The measurements on fabric
B1 and B2 were all performed in a single series of experiments, using the same batch
of Polyol–Biopen mixture (see appendix H and appendix I for the data sheets and
viscosity data respectively).

Preform Preparation for the Sheared Specimen The measurements on B1 and
B2 were performed on single layer preforms in unsheared and 30o and 45o sheared
configuration. All measurements were repeated three times, apart from the unsheared
configurations that were repeated four times (see also table 4.5). The desired cavity
could not be obtained with the available spacers. An aluminium sheet of 2mm
thickness was placed at the bottom of the cavity. The plate had a hole in the centre,
exactly above the injection point and was fixed with silicone gel to the lower mould.
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The silicone was applied just around the injection point, preventing the fluid from
flowing underneath the aluminium plate. An effective cavity thickness of 0.5mm was
obtained for a 2.5mm spacer. The resulting fibre contents Vf , relative to the shear
angle γ, are calculated using:

Vf =
ρA

hcρ cos γ
× 100%, (4.26)

with ρ and ρA the volumetric and areal densities (see table 4.4), respectively, and hc

the height of the cavity. The fibre contents are tabulated in table 4.7.

Table 4.7: Preform and fluid properties for the measurements carried out at the KU Leuven
(γ: shear angle; µ: viscosity; Vf : fibre content; hc: cavity height).

NCF γ [o] µ [mPa·s] layers Vf [%] hc [mm]

B1 0 34.5 1 36.18 0.5
30 41.78
45 51.17

B2 0 34.5 1 36.97 0.5
30 42.68
45 52.28

T 0 34.5 5 56.25 4

The fibre contents of the unsheared biaxial preforms were relatively low. A higher and
equal fibre content for all preforms was preferred, but this was not possible with the
available set of spacers. Therefore, it was opted to perform all measurements using
the same spacers, id est no changes to the test rig were made between the different
measurements. Hence, the measuring conditions were as constant as possible.
The shear was applied using a trellis frame. The shear method is similar to the
method described in section 2.3.3. The size of the trellis frame was large enough to
make a rectangular preform of 500×300mm2 (size of the cavity). Sicomet c© type
85 glue was applied near the edge of the specimen to maintain the shear angle after
releasing the fabric from the trellis frame. The specimen was then cut at the final size
through the glued layer. Cutting with a knife through the fibres that are impregnated
by the glue rather than through the dry fibres causes less damage to the specimen,
since the freedom to slide under the knife is reduced. The specimen preparation is
shown schematically in figure 4.6.
A hole of 10mm diameter was punched in the centre of the preforms, right above
the injection point. The fluid wets the fabric purely in the in–plane direction in this
way. However, small deviations in the initial preform internal geometry, or in the
positioning of the hole with respect to the injection point can cause relatively large
errors.
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Figure 4.6: Specimen preparation for the sheared configurations using the trellis frame and
Sicomet c© glue (dashed area).

Process Conditions and Data Acquisition The RTM machine of the KU
Leuven is pressure controlled and is also used to invert the injection process. A
vacuum is created in the resin reservoir and the (majority of the) Polyol is sucked
back into it for re–use.
An injection pressure of roughly 1 bar was initially used for the biaxial fabrics, but
appeared to be relatively high. A lower injection pressure of 0.5 bar was used to slow
down the injection process. The measured injection pressures are presented in table
J.2.
The pressure near the inlet was measured by a Jumo type 4 pressure transducer. The
output of the transducer is a 0 to 10 volts signal, which corresponds to -1 to 9 bars
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Figure 4.7: Pressure (solid black line) and mass of the fluid reservoir (gray line) versus time
during the injection of the first measurement on B1 (relaxed configuration). The dashed line
indicates the fitted mass function.
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pressure, relative to the ambient pressure. The mass flow was measured by weighing
the resin reservoir. The weight was monitored using a load cell. The signal of the
load cell (1kN) was amplified such that 10V corresponded to 50N. A digital video
camera was mounted above the centre of the tool to capture the flow front position
during the injection.
The measured injection pressure and weight reduction of the fluid reservoir of the
first measurement on B1 in relaxed configuration is shown in figure 4.7. The results
of the other measurements were similar.
The mass reduction in time was converted to a volumetric flow rate employing a power
law function. The power law function has no direct physical meaning, but the change
of mass cannot be explicitly converted to a flow rate as it can be in the scase of a line
injection (see section 4.3.1). The applied formulae read:

M(t) − M0

Mmax − M(t)
=
(

t

t∗

)a

;

M(t) =
M0 + Mmax

(
t

t∗

)a

1 +
(

t

t∗

)a ;

dM(t)
dt

=
(Mmax − M0)

(
t

t∗

)a

a

t

(
1 +

(
t

t∗

)a)2 = ΦM = ρΦ.

(4.27)

The parameter M0 was set to 0, since the injected mass at t = 0 equals 0 kg. The
parameters t∗ and a were free and solved iteratively employing the minimisation
algorithm. The parameter Mmax was set to the averaged value of the last ten data
points. No consistent trend in the fitted parameters was found. The values of the fit
parameters for all measurements are collected in table J.2.
The relatively large amount of scatter on the measurement is caused by the low ratio
of the mass flow rate over the total weight of the resin reservoir. Better results are
expected if the weight of the resin reservoir is not completely carried by the load cell.
A smaller load cell can then be used, which is more suitable for the low mass flow
rates here.

Flow Front Position The flow front positions were determined by analysing the
images of the digital video camera (DV) recording the measurements. The amount
of data is large (25 frames per second are made, a single measurement lasts roughly
30 to 200 seconds), limiting a manual analysis of the images. An algorithm was
implemented in Matlab c© to analyse the flow front position and convert it into a
permeability. The algorithm allows a significant increase in number of points per
image and number of images that can be evaluated compared to a (time–consuming)
manual analysis of the images.
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Firstly, the images captured by the DV were converted to a series of uncompressed
TIFF images. Only the first frame of each second was converted, to reduce the amount
of data. The images were subsequently processed in Photoshop c©. The contrast
between the fluid and the fabric was increased. Moreover, the images were converted
to an 8–bits gray scale TIFF format. The images were then analysed by the Matlab c©

algorithm, which determined the location of the flow front.
The four images in figure 4.8 show how the image of the DV camera is converted via
the image processing steps in Photoshop c© and Matlab c©:

(a) Original image (in gray scale, in fact the DV image is in colour);
(b) 8–bits gray scale image after contrast was increased Photoshop c©. This is the

input for the algorithm implemented in Matlab c©.
(c) Image after the final filter step.
(d) Series of flow front position (circles) and fitted ellipse (solid line), based on the

image presented in (c).

A number of additional corrections and conversions were applied to the obtained flow
front coordinates from figure 4.8(d):

1. Correction for the camera position;
2. Correction for the pixel aspect ratio of the DV camera;
3. Conversion from pixels to millimetres.

Sub. 1:
The position of the camera is (generally) rotated with respect to the mould. The
position (in Cartesian coordinates x) of the camera can be expressed in spherical
coordinates as:

x1 = r cos ϕsph cos θsph;
x2 = r cos ϕsph sin θsph;
x3 = r sinϕsph,

(4.28)

where r is the distance between the mould and the camera, θsph the azimuth angle
and ϕsph the elevation angle. θsph = 0 and ϕsph = π

2 if the position of the camera is
exactly aligned. However, this is generally not the case. The bars of the frame (see
the black areas in figure 4.8(a)) were used to obtain the camera azimuth orientation
with respect to the mould. The elevation angle cannot be obtained from this image
but was assumed to be small. Hence, the error is small, since:

sin
(

π
2 + δϕ

) ≈ 1 − δ2
ϕ

2
, (4.29)

with δϕ a small variation in the elevation angle.
Sub. 2:
The pixels of a DV video camera are rectangular. A width of 720 pixels on a DV
camera correspond with 768 pixels on a normal computer screen.
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(a) Image from DV camera. (b) Gray scale TIFF image after
Photoshop c© filtering.

(c) Black and white image after Matlab c©

filtering.
(d) Flow front positions and fitted ellipse.

Figure 4.8: Filter steps to convert the flow front at t = 10s of original image (a) to a black
and white image (b and c), used to determine the flow front position (d). The solid line in
(d) is the ellipse fitted through the flow front positions.

Sub. 3:
The width of the cavity on the image and the actual width of the cavity are used to
convert the pixels to millimetres.
Image distortion was not accounted for. Distortion of the image can be caused by
a misalignment of the camera, as discussed, but also by the shape of the lens. This
distortion is equal for all images and can be quantified by shooting an image of a
well-defined grid and comparing the image and the real grid coordinates. However,
the distortion was assumed to be small here, since the deviation is generally related
to the distance from the centre of the image. The majority of the measured points
were lying relatively close to the centre of the image.
The measured flow front positions were used to fit ellipses through the data points
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and calculate the permeability, employing the theory described in section 4.3.2. An
example of the ellipses that were fitted through the data points is depicted in figure 4.9.
The measured flow front positions of every fourth second of the measurement of fabric
B1 in relaxed configuration are shown. The solid lines are the ellipses fit through the
data points. The radii of the ellipses increase with increasing time, but the flow rate
slows down (id est the area of the ellipses does not increase linearly). The injection
pressure was constant, resulting in a decreasing pressure gradient. Consequently, the
volumetric flow decreases and the flow front progression slows down.
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Figure 4.9: The flow front positions at every fourth second of the measurement. An
alternating series of five markers (‘◦’, ‘�’,‘�’, ‘♦’, �’) is used for the different ellipses
from the centre to the outer sides of the mould. Note the sections on which no data points
are found, corresponding to the locations of the metal frame on top of the mould. (Fabric
B1, relaxed configuration.)

The number of flow front positions depends – evidently – on the size of the flow front:
the larger the size, the larger the number of data points. However, there are sections
without any data points. This is caused by the metal frame on top of the upper
mould, which is clearly visible in figure 4.8(a). The flattening of the data points of
the outer flow fronts on the top of figure 4.9 are also caused by sections of the metal
frame. This is a known problem of visual tracking of the flow front, since transparent
moulds generally do not possess sufficient stiffness. Metal frames are placed on top
of the transparent mould to acquire sufficient stiffness, hence partly obstructing the
visual determination of the flow front position. However, the algorithm to convert
the image of the DV camera to flow front positions determines the flow front position
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at a large number of points (the ellipse in figure 4.8(d) is based on roughly 200 flow
front positions). Consequently, missing flow front positions, or even erroneous flow
front positions, have a minor effect on the dimensions of the ellipse that is fitted on
the data.
It was attempted to relate the increasing size of the ellipses to the flow rate derived
via the measured mass flow rate. The area AE of an ellipse equals:

AE = πr1r2, (4.30)

with r1 and r2 the major and minor radii of the ellipse. Multiplying the area with
the height of the cavity and the fibre content, results in the amount of fluid present
in the fabric. The flow rate was estimated by analysing the increase of amount of
fluid estimated by the flow front ellipses at different points in time. The obtained
flow rate was compared to the flow rate estimated using (4.27). However, it appeared
to be impossible to obtain a descend fit between both estimations, mainly due to the
large amount of scatter on the measurement of the mass, but also due to the absence
of a proper synchronisation between the mass measurement and the DV images. It
is expected and confirmed by the measurements with the UT test rig (section 4.4.4),
that a smaller load cell provides a more accurate measurement of the mass flow rate.

Permeability Values of Biaxial, Sheared NCF The function F (ξ, η), equation
(4.20), versus time is depicted in figure 4.10. The function values of F (ξ, η) in both
elliptical coordinates defined in (4.21) (� and ♦ respectively) are calculated, again
for fabric B1 in relaxed configuration.
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Figure 4.10: The function F (ξ, η) versus the time. �; first elliptical coordinate, ♦: second
elliptical coordinate. (Fabric B1, relaxed configuration).

The value of the elliptical extents should lie on a straight line according to the theory.
The solid line is a fitted line through the data points. The fitted line does not cross the
origin of the coordinate system. This indicates an unstable flow in the first seconds
of the measurement (the data points near t = 0 are closer to zero than the fitted
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line), possibly combined with a synchronisation error: t = 0 can deviate slightly from
the actual start of the impregnation (1/25 second, due to the frame rate of the DV
camera, t = 0 is the time of the first image at which the flow front was visible).
The permeability is proportional to the slope of the line (see section 4.3.2, equation
(4.22)).
The results of the measurements on the fabric B1 and B2 for relaxed configurations
and 30o and 45o sheared configurations are presented in the figures 4.11 and 4.12.
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Figure 4.11: Measured permeabilities of fabric B1 in relaxed and 30o and 45o sheared
configuration. The light gray bar refers to the principal permeability K1, the dark gray to the
principal permeability K2.

The first three measurements of the permeability of both fabrics in relaxed configuration
(figure 4.11(a) and figure 4.12(a)) show a significant lower permeability. Moreover,
a large difference between major and minor principal permeabilities (light gray and
dark gray bar respectively) is observed for fabric B2. An additional measurement on
the relaxed configurations was performed at the end of the series of measurements
for each of the fabrics. The results of the fourth measurement do not show a strong
anisotropy and the permeability is roughly 3 times as high as the major principal
permeability of the first three experiments.
The origin of the deviations between the measurements is unknown. However, the
mould was slightly changed between the experiments: the 2mm spacer combined with
a 1.5mm plate inside the cavity were used for the first three measurements, whereas
a 2.5mm spacer and a 2mm plate were used for all other experiments. A cavity of
0.5mm should result in both cases, but it is not unlikely that a small difference has
occurred. An estimate of the effect of a deviation in the cavity height is made using
the Kozeny–Carman relation [16–18] between the permeability and the fibre content:

K =
r2
f

8K0

(1 − Vf )3

V 2
f

, (4.31)
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Figure 4.12: Measured permeabilities of fabric B2 in relaxed and 30o and 45o sheared
configuration. The light gray bar refers to the principal permeability K1, the dark gray to the
principal permeability K2.

with K0 as empirical constants and rf the radius of a filament. The fibre content Vf,2

for a permeability K(2) that is 3 times lower than the permeability K(1) at Vf,1 = 0.36
is found by solving:

K(1)
V 2

f,1

(1 − Vf,1)3
= K(2)

V 2
f,2

(1 − Vf,2)3
. (4.32)

A fibre content of roughly 47% is estimated. The cavity height to obtain this fibre
content is slightly less than 0.4mm, a deviation of more than 20% of the intended
cavity height. However, the strong anisotropy is not explained. Hence, the difference
cannot be explained by a deviation in the actual cavity height only. An explanation
for the anisotropy could not be found. Again, the conclusion could be drawn that
the measured anisotropy confirms the predictions of the network (see section 4.4.2).
However, the results of the sheared configurations do not confirm this anisotropy.
The results of the first three measurements are considered to be erroneous, although
a good explanation of the deviations cannot be found. The fourth measurements were
done using exactly the same spacer and spacer plate as used for the measurements
on the sheared configurations. The permeabilities of the fourth measurements
are more consistent with the permeabilities of the sheared configurations (figure
4.11(b)&(c) and figure 4.12(b)&(c)), which confirms the assumption that the first
three measurements should be discarded.

The permeabilities of the sheared configurations were compared to the results
presented by Endruweit and Ermanni [146] and those presented by Smith et al. [163].
The experimental results and predicted permeabilities initially show an increase of the
permeability in the first principal direction, followed by a decrease of the permeability
for larger shear angles (according to the theory presented by Advani [16]). The
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location of the maximum value of the permeability in the first principal direction (see
figure 4.13 for the definition of the directions) depends on the geometry parameters
used by the authors: Endruweit and Ermanni use the ratio of the fibre radius and
the dimensions of the unit cell that they use, whereas Smith et al. use a parameter
based on the Kozeny–Carman equation.

machine direction

cross direction

1st fibre direction2nd fibre direction

+θ−θ

(a) Relaxed configuration.

1st principal direction

2nd principal direction

1st fibre direction2nd fibre direction

+θ − γ
2−θ + γ

2

(b) Sheared configuration.

Figure 4.13: Relaxed and sheared configuration of a ±θ fabric. The applied shear angle
is γ. The principal directions are theoretically undetermined for an isotropic material, but
assumed to correspond to the machine directions.

The increase of the first principal permeability is explained by the reorientation of
the fibres towards the first principal direction. This effect is counteracted by the
increasing fibre content (inversely proportional to the cosine of the shear angle, see
equation (4.26)). The relative effect of both effects is equal at a certain shear angle.
The shear angle at which the first principal permeability is equal to the principal
permeability of the unsheared configuration is different for each fabric.
The result of the measurements on fabrics B1 and B2 confirm the expected behaviour.
The permeability in the first principal direction of the 30o sheared preforms is higher
than the other two first principal permeabilities (light gray bars in the figures 4.11
and 4.12). The permeabilities in the second principal direction decrease (dark gray
bars in the figures 4.11 and 4.12). The maximum permeability is reached at a higher
shear angle than results in [146] and [163] indicate, although it should be noted
that their measurements concerned different fabrics and consequently other geometry
parameters are more appropriate here.
It was shown in chapter 2 that the width of the SYDs decreases from their initial width
in relaxed configuration to a minimum width if shear is applied (see section 2.3.3).
A decrease of the permeability in addition to the decrease due to the increasing fibre
content is hence expected for shear angles up to the threshold shear angle (see equation
(2.19)). This effect vanishes as the shear threshold angle is reached, since the width of
the SYDs remains constant from this point. It was also indicated that two in–plane
compression mechanisms were observed: closing of the SYDs (meso–level in–plane
compression) and compaction of the fibre bundles (micro–level compression). It is
not possible to quantify the contribution of these simultaneously occurring phenomena
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based on the available experimental data. However, the results shown by Endruweit
and Ermanni [146] indicate a difference in the quality of the fit between the measured
data and their model for relatively low and relatively high shear angles. A further
investigation on this topic is recommended, using the network model and an extended
set of experimental data.

Anisotropy and Reorientation of Biaxial, Sheared NCF The anisotropy of
the permeabilities for the different shear angles is depicted in figure 4.14. The bars
indicate the averaged anisotropy of the flow front ellipses at all time–steps for each
of the measurements. The error bars indicate the variation s, defined as (see also
appendix B):

s =
t0.95(N − 1)σ√

N
, (4.33)

with t0.95 the student–t distribution with N − 1 degrees of freedom and a 95%
confidence interval, σ the estimated standard deviation and N the number of elements
(here number of flow fronts) in the set. Note that the anisotropy is defined as the
ratio of the minor permeability over the major permeability and is equal or lower
than 1 as a result.
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Figure 4.14: The anisotropy α for the fabrics B1 and B2 for different shear angles. The
error bars indicate the variation.

The anisotropy of the first three measurements on both fabric B1 and B2 in relaxed
configuration was considered to be erroneous, as discussed previously. The fourth
measurement shows an averaged anisotropy of 0.8–0.9. Ideally seen, the anisotropy
should be one, since the fabric is balanced. However, a small amount of anisotropy is
likely to be observed in practice due to variations in the microstructure and an initial
amount of misalignment of the fibres with respect to the original orientation (±45o
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or 0o/90o). The initial shear angle can to be up to 7-8o for these types of fabrics
[31, 83, 85]. However, the pattern of the stitch threads can also cause anisotropy of
the permeability (see the discussion in section 3.4.2).
The anisotropy is weaker than expected based on the theory presented by Advani
[16]. The theory assumes that the permeability of a number of stacked plies can be
calculated by a superposition of the individual ply permeability tensors. It can be
derived that the principal permeabilities for a biaxial fabric equal:
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(4.34)

with Kx and Ky the longitudinal and transverse permeability of the bundles in a
single ply, θ the fibre orientation and γ the shear angle (see figure 4.13). The
transverse bundle permeability is generally small compared to the longitudinal bundle
permeability [148, 163]: Ky � Kx. The anisotropy can then be approximated by
discarding the contribution of Ky:
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The expected anisotropies for 30o and 45o shear of the fabric equal 0.33 and 0.17
respectively. These values are substantially lower than the measured anisotropies.
This is partly due to the neglect of Ky: the anisotropy increases to 0.42 and 0.27,
respectively, for Ky = 0.1Kx. It is partly caused by the stitches. The shear is applied
such that the stitch threads are not (or least) loaded in tension, see figure 4.15. As
a result, the enclosed angle between the fibre families becomes larger in machine
direction and smaller in cross direction. The first principle direction corresponds to
the direction in which the enclosed angle is the smallest.
The anisotropy of fabric B1 is slightly weaker than that of fabric B2 for the sheared
configurations, although the anisotropy in relaxed configuration is stronger. A
possible explanation is found in the stitch patterns of the fabrics combined with
the fibre orientations. Fabric B1 has a tricot warp knit stitch pattern and a ±45o

orientation of the fibres. The stitch threads on the bottom are oriented in the machine
direction. The stitch pattern on top shows a pattern as shown in figure 4.15(a). The
main direction of the pattern is also oriented in the machine direction. Hence, the first
principal direction is expected to be aligned with the machine direction. However, the
first principal direction switches to the cross direction if the fabric is sheared. As a
consequence, a weaker anisotropy is found (compared to the predictions according to
Advani [16]), since the stitches still enhance the flow in the second principle direction.
The anisotropy is expected to be stronger for fabric B2 than for fabric B1, since the
flow in the direction of the stitches contributes to both principal directions, rather
than only the cross direction (see figure 4.15(b)).

The orientation angle β of the flow front ellipses with respect to the machine direction
is shown in figure 4.16. The principle axes are expected to be oriented in the
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(a) Tricot stitch in unsheared and sheared state
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(b) Tricot chain stitch in unsheared and sheared state

Figure 4.15: The effect of a tricot and tricot chain stitch pattern on the orientation of the
principal directions, with shear angle γ and rotation of the principal directions ϕ.

bisectrices of the directions of the two fibre families for balanced fabrics (see Lai
and Young [151]). Consequently, the angle between the bisectrix and the machine
direction equals half the shear angle. The stitches cause a slight unbalance in fabric
B2, since the main direction of the stitch threads does not correspond with either of
both principal directions. The angle ϕ in figure 4.15(b) indicates the rotation of the
principal direction relative to the bisectrices. It was therefore expected that the angle
β is larger than half the shear angle. However, this is not evidently confirmed by the
measured orientation of the ellipses.

Measurements on Triaxial NCF The permeability of the triaxial fabric was
measured on a five–layer preform in unsheared configuration using a 4mm cavity,
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Figure 4.16: The orientation angle β for the fabrics B1 and B2 for different shear angles.
The error bars indicate the variation.

resulting in a fibre content of 56.25%6. No additional spacers inside the mould cavity
are used. The number of layers in the preform and the cavity height are equal to the
number of layers and the cavity height specified in the measurement of the triaxial
fabric, as discussed in section 4.4.2. A constant injection pressure of 1.5–2 bars was
used for the measurements on the triaxial fabric (see table J.2 for a complete overview
of the process settings).
The main difference between the test rigs of the NLR and the KU Leuven is the
injection strategy: a central injection versus a line injection. The advantage of the
central injection is that the complete in–plane permeability tensor is obtained in
one single measurement. Another difference is that the KU Leuven rig employs
a pressure controlled injection, whereas the NLR employs a flow rate controlled
injection. This should not affect the measured permeability. The measurements
carried out with the set-up of the KU Leuven are mainly used to verify the results of
the K45 measurements, that raised some questions.
Three measurements were done. The measured data is treated in the same way as the
data of the measurement on the triaxial fabrics. The permeabilities K, anisotropies
α and ellipse orientations β that were obtained are depicted in figure 4.17. The light
gray bars refer to the first principal permeability, the dark gray to the second principal
permeability. The anisotropies and ellipse orientations are the averaged values of all
ellipses in a single measurement.
The value of the permeability corresponds reasonably well with the values measured
by the NLR. The first principal permeability is somewhat lower compared to the
results of the NLR (≈ 2.5−3.1×10−11m2 versus ≈ 5.2−7.8×10−11m2), whereas the

6The specifications of the manufacturer were used, instead of weighing the preform, as was done
for the measurements at the NLR. This results in a small difference in the fibre contents: 56.25%
versus 56.57%
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Figure 4.17: The results of the measurements on the triaxial Non-Crimp Fabric. The
light gray bars indicate the first principal permeability, the dark gray the second principal
permeability.

second principal permeabilities are closer to each other (≈ 1.6− 2.2× 10−11m2 versus
≈ 2.1−2.9×10−11m2). Consequently, the anisotropy is weaker than predicted by the
NLR (≈ 0.7 versus ≈ 0.5). More important to note is that there is no indication of
a large value for K(45). The values measured by the NLR are most likely erroneous.
The measurements of the biaxial and quadriaxial material also resulted in large values
for K45, for which no explanation or confirmation from other experiments were found.

4.4.4 In-Plane Experiments UT

The test rig developed at the University of Twente (see table 4.2) was used for a
series of experiments on fabric B3. Measurements were performed on single and
multi layer preforms (2 and 4 layers), as indicated in table 4.5. Only the permeability
in machine direction (K0) was measured. The aim is to verify if repeatable results
can be obtained with the test rig and if the results obtained with the rig of the NLR
can be reproduced.
Six pressure transducers are placed along the centre line of the lower part of the
mould. The transducers are Kobold type 3251.075.192 sensor (closed membrane,
hence also suitable for curing resin systems) and can measure pressure from 0 up to
10 bars relative to the atmospheric pressure. The output is a 0..10V signal.
The progress of the flow front is measured by the pressure transducers and by twelve
flow front sensors, located on either side of each of the pressure transducers. The flow
front sensors are based on the difference between the electrical resistance of air and
the injected fluid. The fluid shortcuts an electrical circuit, resulting in a signal of the
volt meter, as indicated in figure 4.18.
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Figure 4.18: Schematic drawing of a flow sensor circuit. The electrical circuit is shortcut by
the fluid, resulting in a change in the voltage drop V measured over the reference resistance
Rref .

The reference resistance has to be of the same order of magnitude as the resistance
of the injected fluid. A wheatstone bridge is used, since it is an effective amplifier
to measure small variations over high resistances, such as the resistance of the test
fluid Polyol. The contact points of the sensor are embedded in polyamide. A similar
system of fluid detection is used by Hoes et al. [25, 27]. Their equipment is only
capable of measuring glass fibre preforms. Carbon fibres shortcut the circuit since
they are conductive. The small change in resistance if the test fluid arrives at the
sensor is consequently not detected by the sensors. Contact with the preform should
therefore be avoided. A conical hole is drilled in the top of the sensor applied here. The
sensor wires are placed slightly below the surface of the mould. A similar approach
is adopted by Liu and Parnas [123]. The fluid can enter the small hole, but the fibres
cannot. The conical shape of the hole also allows the plate to be released easily if a
curing epoxy is used.

polyamide cover

conical hole

copper wires

Figure 4.19: Cross–sectional view of a flow sensor.
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The number of required channels of the data acquisition shuttle is reduced by
connecting the flow front sensors in each row in parallel. A jump in the voltage
occurs each time the fluid reaches the next sensor. Only two channels are required in
this way.
The flow rate was measured by weighing the pressure vessel, similar to the method
employed at the test rig of the KU Leuven (section 4.4.3). The pressure vessel was
placed on a large cantilever construction. The weight of the vessel is compensated by
a balance weight. A 100N load cell was used to measure the change of mass during
the injection.
The resulting output is depicted in figure 4.20. The reduction of the mass of the
pressure vessel is shown in the top graph. The pressures measured by the six
transducers are plotted in the graph in the middle. The signal of the flow front
sensors is shown in the lower graph. The data from the second measurement on a
single layer NCF is used to generate the plot. The other measurements showed similar
results.
The decrease of the weight of the pressure vessel corresponds to the weight of the fluid
that is injected. Hence, a measure for the flow rate is obtained. Theoretically, the
mass of the injected fluid as a function of the time is proportional to the square root of
the time during the wetting stage. The flow rate is consequently proportional to the
inverse of the square root of the time (see equations (4.14) and (4.15)). The flow rate
becomes constant once a stationary flow is established in the preform (fully saturated
preform). It was therefore expected that the increase of mass starts with a parabolic
function, followed by a straight part. This can unfortunately not be confirmed by the
measured mass as depicted in figure 4.20. A large amount of noise is observed at the
beginning of the measurement. The noise is most likely caused by the relatively high
flow rate in the first part of the injection. This cannot be avoided in a measurement
using a constant injection pressure. All other results show a similar amount of noise
at the start of the measurement. A rather constant mass flow rate was observed in the
remainder of the measurement. This indicates a stationary flow in the saturated part
of the preform. Consequently, the second part of the curve can be used to determine
the saturated permeability.
The pressures measured by the six pressure transducers were used to measure the
pressure drop over the preform, but they were also used to detect the arrival time
of the fluid (see also section 4.4.2, where the same method is used, with only two
transducers). The arrival of the flow front was also detected by the flow front sensors.
The activation of a sensor results in a jump of the output signal, see figure 4.20. The
fluid was expected to arrive at the same moment at the pressure transducers as the
moment at which it arrives at the flow front sensors on either side of the pressure
transducers, since a line injection is applied. Small deviations in the arrival time can
occur due to local differences in the permeability. The actual flow front is never a
perfectly straight line. However, large deviations in the arrival times indicate race–
tracking or a pressure gradient that is not parallel to the longitudinal direction of the
mould. This was elaborately discussed in section 4.1.2 and section 4.4.2.
The jumps in the two output signals of the flow front sensors were small (the order
of tenths of volts on a 0–5V scale, with maximum amplification of the wheatstone
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Figure 4.20: Typical raw output data from a permeability measurement with the UT test
rig. On top: the mass reduction of the pressure vessel; in the middle: pressures of the six
pressure transducers; at the bottom: signal of the flow sensors. (Results from single layer
NCF).

bridge). The signals were scaled between 0 and 1 and 1 and 2 respectively7, which
facilitates mutual comparison of the data. Moreover, unintended and occasional
shortcutting of the sensors by the carbon fibres was filtered out of the signal. A
reasonable agreement was found for the signals shown in figure 4.20 and the fluid
arrival times as measured by the pressure transducers. Unfortunately, the sensor
signal was not always as undisturbed as in this case. Frequent shortcutting of the fibres
occurred, resulting in an unusable output signal. Therefore, the signal of the flow
sensors was not used to calculate the permeability. Instead, the signal of the pressure
transducers was used to determine the flow front arrival times and subsequently the
permeability of the preform.

7The actual size of the step is not relevant: it is only important to know when the sensor is
activated.
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A linear pressure drop was expected and hence the pressures measured by the
transducers numbers 2 to 5 should lie on the line connecting the pressures measured
by the first and last transducer, as depicted in figure 4.21(a). The graphs are based
on the results of a measurement of a single layer fabric, but are representative for the
other results.
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Figure 4.21: (a): The pressure drop over the preform during unsaturated (�) and saturated
(◦) flow. The solid and dashed lines are fits through the data points of the unsaturated and
saturated flow respectively. (b): The square of the flow front position in time. The solid
line is a fit through all data points, the dashed line only takes the last four data points into
account.

The pressure drop was analysed at two instants: firstly, the moment at which the
fluid reached the sixth and last pressure transducer (this time is indicated in the
graph). A solid line is fit through the measured pressures, indicated by the black
diamonds. Secondly, the pressure drop half way through the saturated stage was
determined. The pressures reach a constant value if the preform is entirely saturated
(stationary flow, horizontal lines in figure 4.20). The saturated stage is reached for
most of the measurements. The open circles correspond to the measured pressures in
the saturated stage, the dashed line is a fit through these data points.
The measured values are close to the fitted lines. Small deviations are explained by
local inhomogeneities in the structure of the NCF, such as the variation in the internal
structure as discussed in chapter 2. The deviations are consistent for the unsaturated
and the saturated flow: a measured value is either lower than expected for both fits,
or higher. Hence, the origin of the deviation is most likely found in variations in the
preform material rather than in the apparatus.
The pressure drop for the saturated flow is lower than for the wetting flow. This
implies that the saturated permeability is higher than the unsaturated permeability.
This was also found in the experiments performed with the test rig of the NLR.

The squared flow front positions were expected to be linearly related to the
impregnation time according to equation (4.5). A good agreement was found, as
shown by the solid line in figure 4.21(b). The graph is representative for the other
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results. A consistent deviation is observed in the first part. The deviation is expected
to be due to instabilities in the flow in the first part of the impregnation. The pressure
drop was high in the beginning, possibly causing some fibre wash or other unexpected
phenomena. The dashed line was fitted on the last four flow front positions only. A
better correlation between the data points and the fitted line was found when only the
last four data points were taken into account. The permeabilities that were calculated
from both fits, differ 10–20% from each other.
The saturated permeability was also measured. The measurement of the weight of
the fluid container was much more accurate than for the measurements using the rig
of the KU Leuven (apart from the instabilities measured in the first seconds). The
smaller load cell (100N versus 1kN for the KU Leuven set–up) evidently provides
better results. The volumetric flow rate was determined by fitting a straight line
through the data points in the saturated region. The point in time at which the last
pressure reached 80% of its maximum pressure was used as a starting point of the
saturated region. The volumetric flow rate equals the slope of the line divided by the
density of the fluid (see equations (4.13)–(4.15)).
The measured permeabilities are shown in figure 4.22. The permeability values are
corrected for a fibre content of 56.69% using Kozeny–Carman’s equation (4.31), since
the fibre content was not constant for the different configurations. The fibre content
equals the target fibre content in the measurements performed with the NLR test rig,
thus allowing a mutual comparison between the measured permeabilities.
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Figure 4.22: Measured, normalised (un)saturated permeability values for the single, double
and four layer preforms. The unsaturated permeability is based on all flow front positions
(light gray bars) or on only the last four flow front positions (semi dark gray bars). The
darkest bars indicate the saturated permeability.

The repeatability of the results for the unsaturated permeability for each set was fairly
good. The variation was small and well within the bounds of variation predicted by
the network model presented in chapter 3. The differences between the permeability
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of the single and multiple layer preforms are small and are not significant.
The saturated permeabilities show larger deviations than the unsaturated permeabilities.
The saturated permeability of a single layer preform was significantly higher than the
unsaturated permeability of a single layer preform. The variation was also larger. It is
likely that edge effects have caused this larger deviations. The saturated permeability
of the double layer preform was roughly the same as the saturated permeability. The
differences are not significant. The results obtained with the test rig of the NLR also
indicate a slightly, but not significantly, higher saturated permeability.
The saturated permeability of the four layer preforms was roughly 1.5–2 times the
unsaturated permeability, significantly higher than the unsaturated permeability.
Nesting is a possible cause, but generally nesting does not play a significant role
for NCFs (see also section 2.5. The variation in the saturated permeability is not
consistent with the variation in the unsaturated permeability: a higher unsaturated
permeability was not leading to a higher saturated permeability. The origin of the
deviations could not be identified.
The measured permeabilities were roughly 5 times as high as the permeability
measured by the NLR, see figure 4.4. There is no explanation found for this deviation.
The result obtained by SiComp [32] on the same fabrics indicate a lower permeability
than measured by the NLR. It is stated in the report [32] that: “a comparison between
the experiments [...] showed that it is almost impossible to compare the results due
to the different test techniques that were used. Therefore, [...] it is very important
to develop a standardised method and protocol for determining the permeability of a
fibre reinforcement [...]”. This conclusion is strongly confirmed by the measurements
presented here, despite the good repeatability and the consistency of the measured
data for multiple layer preforms.

4.5 Conclusions on the Permeability Measurements

A number of measurements was performed on different fabrics and at different
institutes, using different test rigs. It was not only aimed to compare the experimental
results with the models, but also to perform a mutual comparison between the
experimental methods. Once again it should be noted that the comparison between
the flow model and the experiments is yet only qualitative. The following conclusions
are drawn:

– The measurements with the line injection permeability measuring device at
the NLR on biaxial, triaxial and quadriaxial fabrics, show an anomalous
permeability for 45o orientation (K45). The permeability is significantly higher
compared to the permeabilities in machine direction K0 and cross direction
K90. The deviations are the largest for the biaxial fabric and the smallest for
the quadriaxial fabric. The origin is unknown.

– The repeatability of the measurements is fairly good for all three test rigs. The
variation in the permeability is relatively low. The ratio between the maximum
and the minimum measured permeability was found to equal roughly 1.2–1.8
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for the majority of the measurements. This is well within the limits resulting
from the network permeability predictions (max. 2.5).

– The method to analyse the images from the flow front and subsequently calculate
the permeability is found to perform well. The position of the flow front can be
determined accurately and at a large number of points in time. The accuracy
of the permeability calculated from the acquired data is improved. Moreover,
the method is less time consuming than a manual analysis of the flow front.

- The saturated permeability is consistently higher than the unsaturated permeability,
according to the results of the measurements at the NLR and the UT. However,
the differences are not significant for the NLR results, due to the amount of
variation on the measured values, whereas the difference is significant for the
UT results. The ratio between the unsaturated and saturated permeability is
not constant. There is no relation found between both.

– The permeability of fabric B3, measured with the UT test rig is roughly five
times as high as the permeabilities measured with the test rig of the NLR for
the same type of fabric and a comparable fibre content. The difference could
not be explained.

– A good correspondence was found between the permeabilities of the triaxial
NCF measured with the set–up of the NLR and with that of the KU Leuven.
The permeability in the first principal direction is relatively low for the KU
Leuven measurement compared to the NLR measurement (maximal factor 3
difference), but the differences between the second principal directions are not
significant. However, the high value of the permeability for the 45o orientation
(K45), as measured by the NLR, could not be reproduced by the measurements
at the KU Leuven. Consequently, the results are considered to be erroneous.

– The results of the measurements on the single layer biaxial NCFs in undeformed
and sheared configuration correspond with the results presented in the literature.
The initial increase and subsequent decrease of the first principal permeability
for an increasing shear angle is explained by three simultaneously occurring
phenomena:

1. the alignment of the fibres in the flow direction (increase);
2. an increase of the fibre content due to the shearing (decrease);
3. the size of the SYDs, which decrease up to a shear angle of roughly 30o

after which they remain constant (vanishing decrease).

The last phenomenon follows from the geometrical model presented here and
was not recognised by others.

– The anisotropy of the fabrics is found to deviate from the theoretically estimated
values (based on the theory of superposition of ply permeabilities). The results
of the NLR are close to the theoretical value on the average, but exhibit a
large amount of scatter. The anisotropy of the triaxial material is slightly
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underestimated. The results obtained at the KU Leuven indicate a higher degree
of anisotropy than the theory predicts, for both undeformed and sheared fabrics.
The deviations from the theory are explained by:

1. Initial misalignments that can be up to 7–8o;
2. Neglect of the transverse permeability of a ply;
3. Flow enhancement in the machine direction by the stitch threads;

– The large amount of scatter in the anisotropy of the permeability measured
at the NLR is a result of the low correlation between the three individual
measurements that are required to construct the complete permeability tensor
in the case of a line injection measurement. This is a serious shortcoming of the
line injection strategy.

– The high degree of anisotropy predicted by the model is not confirmed by the
experiments. A more appropriate description of the permeability in the edge
sections of the SYDs will improve the prediction of the model. It was not
possible to quantify the anisotropy based on the available experimental data.

– The measured reorientation of the principal directions during shear could not
be related to the theory found in the literature, nor be explained by the effect
of the stitches.

– The permeability test rig developed at the UT proved to enable a relatively large
number of measurements per unit of time. The reproducibility of the results is
fairly good.

– The mass of the resin container was measured during the measurements with
the rig of the KU Leuven and that of the UT. Comparison between the data
revealed that the larger load cell used at the KU Leuven, suffered more from
noise than the smaller one used at the UT. Consequently, the measured decrease
of mass could not be related to progression of the flow front for the KU Leuven
measurements, whereas it could for the measurements at the UT, although only
in the saturated part of the measurement. The initial part of the curves of the
UT measurements is strongly distorted due to vibrations in the first part of the
experiment.



150 Permeability Measurements



Chapter 5

Conclusions &
Recommendations

The relation between the internal structure of a textile reinforcement and its
permeability was investigated in this research project. A methodology was described
to implement the variability, observed in the internal structure, in the prediction of
the permeability of undeformed and sheared textile reinforcements. The methodology
applies for the class of Non–Crimp Fabrics (NCF). Three main topics were presented:

1. A description of the internal geometry, including the variation and the effect of
shear deformation;

2. A flow model based on the geometrical model;

3. A qualitative comparison between experimental permeability data, measured at
three different institutes, and the results of the flow model.

The internal geometry of a Non–Crimp Fabric was analysed. It was found that the
distortions, induced by the stitch threads piercing through the fabric, form meso–
level gaps. The dimensions of these Stitch Yarn induced fibre Distortions (SYD) were
found to vary. This variation was analysed in detail for unsheared and sheared fabrics.
Consequently, the geometrical model can be linked to a fabric deformation model.
It was assumed that the permeability of the fabric is dominated by the flow behaviour
in the SYDs, since the dimensions of the SYD are an order of magnitude larger than
the free space between the filaments inside a fibre bundle.
A network of channels was defined, based on the dimensions of the SYDs and the
stitch characteristics of the material. The variation on the dimensions of the SYDs was
applied to the network, rather than to a single unit cell. This network, representing
a biaxial ±45o fabric was analysed in detail. The conclusions that can be drawn are
that:

1. The variations in the internal structure of a Non–Crimp Fabric have a significant
effect on the macroscopic permeability of the fabric.
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2. It is not sufficient to average over a sufficiently large number of single unit cells,
such as a single SYD. A coupled network is required to obtain an accurate
prediction of the permeability and its variation.

3. The spatial distribution of the dimensions of the SYDs in the network has a
significant effect on the normalised permeability.

The permeabilities in the two principal directions were analysed for a network in which
the variation on the SYD dimensions is randomly distributed over the network. The
measured SYD dimensions were used as an input. The permeabilities were compared
to the principal permeabilities of the idealised situation without a variation on the
SYD dimensions. It was found that the averaged permeability does not only depend
on the averaged SYD dimensions, but also on the variance of the set of widths. The
permeability in the machine direction was found to be ≈ 85% of the permeability in
the idealised network. A single unit cell cannot capture this effect.
The difference is less in the second principal direction, since the permeability of the
network with a variation in widths remains nearly equal to the permeability of a
network without any variation on the averaged SYD dimensions.
Variations in the order of 5–10% were found for the randomly distributed SYD
dimensions. These variations are reflected in a significant variation in the macroscopic
permeability. Both variations are similar in magnitude.
Various spatial distributions of the SYD widths over the network were analysed. It
was shown that a lower and upper bound can be derived. It appears that the amount
of ordering in the spatial distribution determines how closely the lower and upper
bounds are approximated. The difference between the lower and upper bounds is a
factor of 2.5 for the SYD dimensions and variations that were used here.

The network model shows that the variations in the permeability up to a factor of 2.5
can be predicted for a biaxial NCF, depending on the spatial distribution of the SYD
dimensions over the network. Hence, a significant amount of the measured differences
in the permeability values can be explained from the variation in and distribution of
the SYD dimensions.
However, the amount of variation on the experimentally determined permeability is
not completely explained by the network model, as was shown by the measurements
on different Non–Crimp Fabrics at different institutes. The main conclusion that
can be drawn from the experimental data is that the line injection strategy can lead
to erroneous results if the permeability is measured in a direction that does not
correspond to the main direction. An unknown amount of transverse flow will result
if the pressure gradient is not in one of the principal directions.

A number of suggestion arose from the above conclusions and the more detailed
conclusions presented at the end of each chapter. The recommendations for further
research are:

– Optimise the analysis of the dimensions of the SYDs. The main issue is
automation of the analysis procedure which is currently done by hand. Various
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technologies are available to be used, for example digital image analysis or textile
porosity measurements.

– Establish a correlation between the length and the width of the SYD, as well as
a correlation between the dimensions of neighbouring SYDs. This will improve
the prediction of the channel permeabilities and it will provide information on
the spatial distribution of the SYDs and consequently enhance the prediction
of the permeability. In line with this, a parameter that indicates the level of
order in the distribution is suggested to facilitate the link between the spatial
distribution and the network permeability.

– Enhance the predictions of the anisotropy, by a better approximation of the flow
resistance in the fabric around the edge sections. This implies the incorporation
of the impregnation behaviour of the fibre bundles. The anisotropy of the
currently implemented model is too high compared to data provided by the
experiments.

– Develop the model such that a quantitative comparison with experimental data
and other numerical codes can be made. The focus was on the qualitative side
of the model, but the step to a qualitative model is required to use the model
in a practical design or develop environment.

– Implement the stitch thread in the model. The permeability prediction is
enhanced if the possibility to vary the stitch pattern is included.

– Develop a methodology to implement the interaction between different layers.
This thesis has provided a number of suggestions to this end. This allows the
analysis of multi layer effects. It is likely that the flow behaviour differs for
multiple layer networks compared to a single layer network.

– Extend the model to a three dimensional model. The implementation of a
model for the stitch thread as well as the interaction between different layers,
allows the analysis of flow in the out–of–plane direction of the fabric. This is
seen as an important extension of the model, since knowledge on the transverse
permeability becomes more important due to the application of Resin Transfer
Moulding processes for large, relatively thick composite components. Moreover,
the textile reinforcement is often impregnated in transverse direction if vacuum
driven processes, such as Resin Infusion under Flexible Tooling, are applied.

– The work on a permeability measuring device developed at the University
should continue with improvements on the sensor system. The flow front sensor
system appears to work reasonably, but the signal is weak and often shortcut
by the carbon fibres. Improvements to increase the reliability of the sensor
is strongly recommended. Furthermore, the test rig is a promising measuring
device, since it is largely automated and allows relatively short cycle times of
the measurements. Consequently, it is possible to perform a relatively large
amount of measurements, which contributes to a better understanding of the
variations in the measured permeabilities from an experimental point of view.
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– Participation in a benchmark project is considered to be of utmost relevance.
The industry, but also the research area, will benefit from a standardised
measuring method, providing reliable data for production process simulation
as well as model verification.
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Appendix A

Measured SYD Dimensions

The measured data of the widths b and lengths l of the SYDs and their respective
dimensionless representations κ and λ of the fabrics B1, B2 and B3 are collected in
this appendix. The averaged values and scatter of relaxed and sheared configurations
is presented in table A.1 to table A.4. The histogram data of widths and lengths of
the three fabrics are tabulated in table A.5 to table A.7. The histograms themselves
are presented in section A.3.

A.1 Averaged Values and Scatter

Table A.1: Averaged values for the width b including the scatter s for various shear angles.
A lognormal distribution of the data is assumed.

B1 B2 B3
γ b̄ s− s+ b̄ s− s+ b̄ s− s+

[o] [mm] 10−2[mm] [mm] 10−2[mm] [mm] 10−2[mm]

0 0.28 1.15 1.20 0.16 1.04 1.12 0.28 1.96 2.11
15 – – – – – – 0.20 1.38 1.49

to
p

30 0.18 1.18 1.28 0.17 1.06 1.13 0.12 1.04 1.15
45 0.21 1.53 1.66 0.18 1.08 1.16 0.12 0.86 0.93
60 – – – – – – 0.12 0.79 0.85

0 0.43 1.72 1.79 0.38 1.17 1.21 0.27 1.41 1.48
15 – – – – – – 0.19 1.11 1.18

b
o
tt

o
m

30 0.34 1.79 1.89 0.33 1.51 1.59 0.16 1.06 1.14
45 0.33 1.50 1.57 0.33 2.45 2.66 0.17 0.95 1.01
60 – – – – – – 0.15 1.17 1.28
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Table A.2: Averaged values for the length l including the scatter s for various shear angles.
A lognormal distribution of the data is assumed.

B1 B2 B3
γ l̄ s− s+ l̄ s− s+ l̄ s− s+

[o] [mm] [mm] [mm] [mm] [mm] [mm]

0 5.05 – – 4.09 0.19 0.20 7.44 0.33 0.35
15 – – – – – – 6.99 0.33 0.35

to
p

30 5.07 0.27 0.29 4.75 0.20 0.21 5.88 0.39 0.42
45 4.18 0.33 0.36 4.66 0.21 0.23 6.22 0.47 0.52
60 – – – – – – 6.67 0.54 0.59

0 7.15 – – 3.54 0.15 0.16 7.86 0.28 0.30
15 – – – – – – 5.55 0.27 0.28

b
o
tt

o
m

30 4.60 0.21 0.22 5.40 0.27 0.29 5.63 0.26 0.27
45 4.58 0.24 0.26 4.97 0.31 0.33 6.09 0.44 0.48
60 – – – – – – 6.49 0.37 0.40

Table A.3: Averaged values for the dimensionless width κ including the scatter s for various
shear angles. A lognormal distribution of the data is assumed.

B1 B2 B3
γ [o] κ̄ [-] s− [-] s+ [-] κ̄ [-] s− [-] s+ [-] κ̄ [-] s− [-] s+ [-]

0 3.14 0.13 0.14 1.81 0.12 0.13 3.93 0.27 0.30
15 – – – – – – 2.75 0.19 0.21

to
p

30 2.02 0.13 0.14 1.96 0.12 0.13 1.72 0.15 0.16
45 2.40 0.17 0.19 2.02 0.12 0.13 1.75 0.12 0.13
60 – – – – – – 1.64 0.11 0.12

0 4.94 0.20 0.20 4.35 0.13 0.14 3.83 0.20 0.21
15 – – – – – – 2.70 0.16 0.17

b
o
tt

o
m

30 3.83 0.20 0.22 3.80 0.17 0.18 2.20 0.15 0.16
45 3.72 0.17 0.18 3.78 0.28 0.30 2.33 0.13 0.14
60 – – – – – – 2.15 0.16 0.18

Table A.4: Averaged values for the dimensionless length λ including the scatter s for various
shear angles. A lognormal distribution of the data is assumed.

B1 B2 B3
γ [o] λ̄ [-] s− [-] s+ [-] λ̄ [-] s− [-] s+ [-] λ̄ [-] s− [-] s+ [-]

0 1.99 – – 0.81 0.04 0.04 2.37 0.11 0.11
15 – – – – – – 2.23 0.11 0.11

to
p

30 2.00 0.11 0.11 0.94 0.04 0.04 1.87 0.12 0.13
45 1.65 0.13 0.14 0.93 0.04 0.04 1.98 0.15 0.16
60 – – – – – – 2.12 0.17 0.19

0 2.82 – – 1.34 0.06 0.06 2.50 0.09 0.09
15 – – – – – – 1.77 0.08 0.09

b
o
tt

o
m

30 1.82 0.08 0.09 2.05 0.10 0.11 1.79 0.08 0.09
45 1.81 0.10 0.10 1.88 0.12 0.13 1.94 0.14 0.15
60 – – – – – – 2.07 0.12 0.13
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A.2 Histogram Data

Table A.5: Histogram frequency data of fabric B1 for various shear angles (counts per
column, total count is 100), for a normal and logarithmic distribution of the dimensions.

width b length l
top bottom top bottom

γ [o] 0 30 45 0 30 45 0 30 45 0 30 45

15 4 9 4 4 3 – 9 14 – 7 4
27 20 21 3 15 4 – 23 27 – 32 22
0 27 25 17 24 5 – 20 24 – 43 33
27 15 20 13 28 15 – 15 9 – 10 22

lin
ea

r

7 16 11 17 15 12 – 17 10 – 3 9
13 9 4 24 9 15 – 6 1 – 2 5
7 5 5 1 2 17 – 2 6 – 1 2
2 1 3 13 1 14 – 2 4 – 0 2
0 2 1 5 0 11 – 3 2 – 1 0
2 1 1 3 2 4 – 3 3 – 1 1

5 1 1 1 2 1 – 6 2 – 3 1
10 2 4 3 2 2 – 5 5 – 3 3
27 10 5 3 4 3 – 14 18 – 16 7
0 11 16 4 18 4 – 19 11 – 35 24

lo
ga

ri
th

m
ic

27 19 16 26 19 14 – 15 23 – 26 22
7 22 23 17 26 11 – 20 12 – 9 21
5 17 19 24 16 14 – 9 12 – 3 13
15 9 6 1 8 22 – 4 4 – 3 5
2 6 8 13 3 18 – 3 7 – 0 3
2 3 2 8 2 11 – 5 6 – 2 1
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Table A.6: Histogram frequency data of fabric B2 for various shear angles (counts per
column, total count is 100), for a normal and logarithmic distribution of the dimensions.

width b length l
top bottom top bottom

γ [o] 0 30 45 0 30 45 0 30 45 0 30 45

3 7 5 2 1 6 6 4 5 2 6 12
19 23 15 2 3 7 6 6 12 9 38 26
26 29 20 3 11 3 22 16 19 28 33 26
22 22 18 27 9 21 30 33 26 25 11 15

lin
ea

r

12 8 13 9 20 15 20 12 18 21 1 8
10 7 11 7 17 12 8 13 7 5 5 4
6 3 6 30 14 12 3 7 9 5 2 3
0 0 7 9 12 10 3 3 1 1 2 2
1 0 3 6 8 8 0 2 1 3 1 2
1 1 2 5 5 6 2 4 2 1 1 2

1 2 3 1 1 1 3 2 3 1 4 6
2 3 2 1 0 3 3 4 4 1 3 6
0 8 7 2 2 3 1 3 7 8 23 13
5 17 22 17 8 6 16 11 15 17 29 15

lo
ga

ri
th

m
ic

29 23 6 13 6 3 20 25 18 24 23 28
18 23 21 9 14 17 31 22 23 24 6 11
24 13 19 7 23 18 12 15 12 14 4 11
13 8 5 30 21 19 9 9 13 4 4 1
6 2 12 15 15 15 3 4 2 5 3 5
2 1 3 5 10 15 2 5 3 2 1 4
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A.3 Histograms

The histograms of the measured data for all three fabrics and all applied shear angles
are collected in this section. The raw data on the lengths of the SYDs of fabric B2 in
relaxed configuration was not available. The dotted and solid lines are the normal and
lognormal distribution functions based on the averaged value and estimated standard
deviation of the measured data.

A.3.1 Fabric B1
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Figure A.1: Histograms of the dimensionless width κ for fabric B1 in relaxed configuration.
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Figure A.2: Histograms of the dimensionless width κ for fabric B1 in 30o sheared
configuration.
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Figure A.3: Histograms of the dimensionless width κ for fabric B1 in 45o sheared
configuration.
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Figure A.4: Histograms of the dimensionless length λ for fabric B1 in 30o sheared
configuration.
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Figure A.5: Histograms of the dimensionless length λ for fabric B1 in 45o sheared 3
configuration.
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A.3.2 Fabric B2
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Figure A.6: Histograms of the dimensionless width κ for fabric B2 in relaxed configuration.
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Figure A.7: Histograms of the dimensionless width κ for fabric B2 for γ=30o.
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Figure A.8: Histograms of the dimensionless width κ for fabric B2 for γ=45o.
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Figure A.9: Histograms of the dimensionless length λ for fabric B2 in relaxed configuration.
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Figure A.10: Histograms of the dimensionless length λ for fabric B2 for γ=30o.
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Figure A.11: Histograms of the dimensionless length λ for fabric B2 for γ=45o.
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A.3.3 Fabric B3
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Figure A.12: Histograms of the dimensionless width κ for fabric B3 in relaxed configuration.
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Figure A.13: Histograms of the dimensionless width κ for fabric B3 for γ=15o.
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Figure A.14: Histograms of the dimensionless width κ for fabric B3 for γ=30o.
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Figure A.15: Histograms of the dimensionless width κ for fabric B3 for γ=45o.
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Figure A.16: Histograms of the dimensionless width κ for fabric B3 for γ=60o.
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Figure A.17: Histograms of the dimensionless length λ for fabric B3 in relaxed configuration.
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Figure A.18: Histograms of the dimensionless length λ for fabric B3 for γ=15o.
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Figure A.19: Histograms of the dimensionless length λ for fabric B3 for γ=30o.



A.3. Histograms 177

0 1 2 3 4 5
0

10

20

30

40

λ [-]
f

[%
]

(a) top face

0 1 2 3 4 5
0

10

20

30

40

λ [-]

f
[%

]

(b) bottom face

Figure A.20: Histograms of the dimensionless length λ for fabric B3 for γ=45o.
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Figure A.21: Histograms of the dimensionless length λ for fabric B3 for γ=60o.
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Appendix B

Statistics of the Experimental
Data

A large amount of experimental data is collected for the dimensions of the Stitch
Yarn induced fibre Distortions (SYD). A decent statistical treatment of the data
is prerequisite, especially since the aim of the research is to analyse the effect of the
variations in the internal geometry (on micro–level) on the (macro–scale) permeability.
This appendix deals with the statistical methods that were employed to analyse the
data.

B.1 Terminology & Functions

Statistics – it may be too sharp to state that most engineers have limited knowledge
on statistics, but it is certainly useful to introduce a number of terms and functions
that are considered to be relevant here. Given a set X of experimental data x, with:

X = {x1, x2, . . . , xi, . . . , xn}. (B.1)

It is then possible to calculate a mean µ and a standard deviation σ. The mean µ
is the expected value of the measured quantity and is also referred to as E(X). The
standard deviation is based on an assumed distribution of the measured data X. In
most cases, or maybe it is better to say naturally in the literal sense of the word, a
normal distribution is found: the tendency of data, depending on a large number of
parameters, to be normally distributed is proven in the central limit theorem [89].
Normal distributions are also referred to as Gaussian distributions. The normal
distribution is a continuous probability function f(x), stating that the probability
P that a value x of the set (or measurement of the same quantity) lies between a and
b, equals:

P (a ≤ x ≤ b) =

b∫
a

f(x)dx. (B.2)
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The probability function of a normal distribution with mean µ and standard deviation
σ is defined as:

f(x) =
1

σ
√

2
· e

−
1
2

(
x − µ

σ

)2

. (B.3)

The solution of the integral in (B.2) for a normal distribution is:

P (a ≤ x ≤ b) =
1
2

(
erf

(
µ − a

σ
√

2

)
− erf

(
µ − b

σ
√

2

))
, (B.4)

with erf () the error function defined as:

erf (x) =
2√
π

x∫
0

e−t2dt. (B.5)

A frequently observed variation of the normal distribution is the lognormal distribution.
The natural logarithm of the data is taken after which the mean µln and standard
deviation σln are determined.

Generally, the standard deviation σ can only be estimated. The most common and
most accurate estimator s of σ, for a set of n elements is:

s =

√√√√ 1
n − 1

n∑
i=1

(xi − µ)2. (B.6)

The term in the square root is known as the variance. It is also the second central
moment of the data. The kth central moment of a data set is defined as:

mk =
1

n − 1

n∑
i=1

(xi − µ)k
. (B.7)

Note that the first central moment equals zero by definition. The third and fourth
central moments are used to determine the skewness and kurtosis of a set of data,
which are both briefly discussed in section B.5. The skewness and kurtosis are
important parameters in the goodness–of–fit tests for example utilised to verify the
assumption of normality of a set of data. Prior to that, some details on the behaviour
of data sets are discussed.

B.2 Significant and Confidence Intervals

It is certainly worth noting that statistics only formulate statements in a probabilistic
way. It may very well be that the measured quantities do not exhibit the properties
assumed in the statement. This is explicitly pointed out by the confidence intervals.
A certain assumption, for example, holds in – typically – 95% percent of the cases.
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Solving (B.2) for the boundaries a and b, which are symmetrically positioned around
the averaged value µ, such that P (a ≤ x ≤ b) equals 0.95 yields the 95% confidence
interval for the averaged value of the data. Or: the averaged value will be in this
range in 95% of the measurements. It can be found that the 95% confidence interval
for the averaged value equals for a normal distribution:

µ95% ∈
(

x̄ − 1.96σ√
N

, x̄ +
1.96σ√

n

)
, (B.8)

with x̄ the arithmetical averaged value of the measured data, n the sample size and σ
the standard deviation, which may be the estimated standard deviation s. Tabulated
values of the cumulative area under the probability function f(x) are used to find the
value 1.96 [89].
Inversely, it is found that:

µ68% ∈
(

x̄ − σ√
N

, x̄ +
σ√
n

)
, (B.9)

Given a data set of measured values, such as the dimensions of the SYDs for various
shear angles, it can be stated that the difference between the averaged values of
the different sets is referred to as significant if the averaged values are separated
at least 4/

√
n or 2/

√
n times the standard deviation for a 95% or 68% confidence

interval respectively. Once again it is pointed out that the large amount of presented
experimental results does not justify firm statements on a presumed behaviour of the
measured quantity. Formulations like “a significant difference” or “an obvious drop
of...” are easily used, but terms like “suggested behaviour” are far more appropriate.

B.3 Histograms

The distribution of the data set x is graphically shown by a histogram. It shows the
frequency of the occurrence that a certain element of the set x lies in a predefined
subrange of the entire domain of values of x. A convenient way to compare the
histogram data with the normal distribution based on the mean and standard
deviation estimated from the set of data is to plot the distribution function on top of
the histogram. It may even be useful to plot different distribution functions on top
of a single histogram, as was the case in the section 2.3. An example of a histogram
including two distribution functions is presented in figure B.1.
A scaling is required to plot the distribution function and histogram correctly with
respect to each other. The fraction of the data in the central column of the histogram
can be determined, assuming that the data set exhibits a perfectly normal distribution,
by solving (B.4) for a = µ − wc/2 and b = µ + wc/2, with wc the width of a single
column:

P
(
µ − wc

2
≤ x ≤ µ +

wc

2

)
=

1
2

(
erf

(
wc

2σ
√

2

)
− erf

( −wc

2σ
√

2

))
. (B.10)
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Figure B.1: Histogram of the dimensionless width κ of the top face for fabric B3. The dotted
and solid lines are the normal and lognormal distribution functions based on the averaged
value and estimated standard deviation of the measured data.

This value is used to scale the normal distribution function (note: the exponent in
(B.3) equals 1 for x = µ). The distribution function for a normal distribution of the
data, that is plot in the histograms presented in the thesis is:

f(x) = P
(
µ − wc

2
≤ x ≤ µ +

wc

2

)
· e

−
1
2

(
x − µ

σ

)2

· 100%. (B.11)

The function f(x) in the case of lognormal distribution of the data is derived
analogously.

B.4 Statistical Test

A statistical test is a test whether a statistical value or statement is presumably correct
(note that absolute correctness is never achieved). A null hypothesis is formulated,
for example, stating that the standard deviation of a certain set is significantly larger
than that of a second set, or that the data set exhibits a certain distribution. The
hypothesis is transformed to a single value, the statistical value Fs, e.g. the estimated
standard deviation or the deviation from the presumed distribution. This value is
then compared to the critical value, which depends on the test and on the level
of significance. The null hypothesis cannot be rejected if the conditions are met,
otherwise, the hypothesis must be rejected.
The normality of a distributions of the dimensions of the SYD is tested. Two null
hypotheses are formulated:

1. H0: the data is distributed according to a normal distribution;
2. H0: the data is distributed according to a lognormal distribution;



B.4. Statistical Test 183

The applied statistic test is the Jarque–Bera normality test [90–92]. This is a
commonly applied test for normality and is available in Matlab c©. The test value is
computed by [164]:

Fs =
n

6

(
m2

3

m3
2

+
1
4

(
m4

m2
2

− 3
)2
)

, (B.12)

with mk the kth central moment of the data, see equation (B.7). The critical value of
the test Fc is usually the statistic value of a χ2

1−α,k distribution with two degrees of
freedom (k). The level of significance α is typically 0.05. χ2

1−α,k is tabulated in many

Table B.1: Normality of the distributions of the dimensionless width and length of the fabrics
B1, B2 and B3 according to the Jarque–Bera goodness–of–fit test (critical value: Fc = 5.991).

κ λ
linear logarithmic linear logarithmic

γ H0 Fs H0 Fs H0 Fs H0 Fs

B1 top 0 – – – – – – – –
30 1 18.17 0 0.20 1 25.03 0 1.96
45 1 29.53 0 0.01 1 27.82 0 3.63

bottom 0 – – – – – – – –
30 1 41.11 0 3.85 1 463.68 1 43.45
45 0 2.58 1 9.06 1 81.92 0 3.04

B2 top 0 1 21.63 0 3.23 1 29.90 0 4.10
30 1 59.94 0 0.13 1 12.65 0 0.81
45 0 5.24 0 1.32 1 9.54 0 0.02

bottom 0 0 2.07 0 3.50 1 36.05 0 3.38
30 0 1.33 0 5.57 1 136.70 1 21.65
45 0 2.72 1 10.71 1 56.01 0 2.56

B3 top 0 1 6.56 0 4.12 0 1.82 0 2.39
15 0 2.01 1 9.98 1 19.07 0 3.01
30 1 70.71 0 0.57 1 133.95 0 2.90
45 1 31.18 0 0.48 1 26.78 0 0.06
60 1 151.01 0 2.69 1 15.74 0 2.49

bottom 0 0 0.10 1 17.84 0 0.41 0 4.24
15 1 6.51 1 6.60 0 4.68 0 1.76
30 1 370.35 1 18.64 1 9.78 1 13.24
45 1 42.77 0 2.21 1 113.01 0 2.33
60 1 18.84 0 1.37 0 3.37 0 2.45

statistics books (for example [89]). Fc is 4.605, 5.991, 7.378 and 9.210 for α = 0.10,
α = 0.05, α = 0.025 and α = 0.01 respectively.
The results of both tests are presented in table B.1. The left part of the table presents
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the results of the two tests on the dimensionless width κ, the second those on the
dimensionless width λ. A value of 1 for H0 implies rejection of the hypothesis, a
value of 0 implies the hypothesis cannot be rejected.

B.5 Skewness and Kurtosis

The skewness ψs and kurtosis ψk of a distribution are two commonly used characteristics
to test whether a distribution deviates from a normal distribution. The skewness
measures the asymmetry of a distribution, that is the amount of data to the left or
the right of the mean. A negative skewness implies that the data is more spread out
to the left of the mean, a positive skewness corresponds to more spread to the right.
The skewness ψs of a distribution is calculated by:

ψs =
E(x − µ)3

σ3
=

n∑
i=1

(xi − µ)3

(n − 1)σ3
=

1
n − 1

n∑
i=1

(xi − µ)3⎛⎝√√√√ 1
n − 1

n∑
i=1

(xi − µ)2

⎞⎠3 . (B.13)

The kurtosis is a measure for the amount and magnitude of the values below or above
the normal distribution. A normal distribution has a kurtosis of 3. A kurtosis less
than 3 indicates a less outlier prone distribution, a value above three a more outlier
prone distribution [165]. The kurtosis ψk is defined as:

ψk =
E(x − µ)4

σ4
=

n∑
i=1

(xi − µ)4

(n − 1)σ4
=

(n − 1)
n∑

i=1

(xi − µ)4(
n∑

i=1

(xi − µ)2
)2 . (B.14)

The skewness and kurtosis are determined for all data sets, see table B.2. Both a
normal and lognormal distribution is assumed. A smaller skewness is observed for
the majority of the analysed data sets assuming a lognormal distribution (6 exceptions
on κ, 3 on λ). In nearly all cases, the kurtosis is closer to 3 under the assumption
of a lognormal distribution (only 3 exceptions on κ, from which one out of the set of
exceptions of the skewness, and 3 on λ).
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Table B.2: Skewness and kurtosis the distributions of the dimensionless width κ and
dimensionless length λ of the fabrics B1, B2 and B3 for various shear angles.

κ λ
linear logarithmic linear logarithmic

γ ψs ψk ψs ψk ψs ψk ψs ψk

B1 top 0 0.92 3.36 0.42 2.77 – – – –
30 0.95 4.00 -0.06 2.87 1.11 4.20 0.33 2.87
45 1.17 4.41 -0.01 3.11 1.25 3.84 0.38 2.50

bottom 0 0.31 2.72 -0.24 2.98 – – – –
30 1.06 5.45 -0.17 3.98 2.48 12.60 0.82 5.91
45 -0.22 2.39 -0.75 3.19 1.46 6.51 0.31 3.67

B2 top 0 0.94 4.40 -0.29 3.75 0.95 5.02 -0.12 4.04
30 1.26 5.99 0.03 3.23 0.78 3.91 0.00 3.51
45 0.55 2.80 -0.18 2.62 0.71 3.65 -0.02 3.00

bottom 0 -0.10 2.37 -0.45 2.83 1.16 4.95 0.30 3.75
30 0.04 2.49 -0.57 3.36 1.94 7.42 0.95 4.39
45 0.10 2.26 -0.80 3.37 1.46 5.37 0.39 3.26

B3 top 0 0.61 3.42 -0.49 3.28 0.17 2.48 -0.37 2.82
15 -0.07 2.37 -0.77 2.75 0.99 3.94 0.38 2.63
30 1.57 5.83 0.18 2.99 1.67 7.78 -0.04 3.91
45 1.17 4.56 0.12 2.81 1.14 4.24 -0.03 2.95
60 1.81 8.01 0.37 3.41 0.92 3.80 -0.37 3.30

bottom 0 0.06 3.17 -0.88 4.23 -0.02 2.74 -0.51 3.11
15 0.54 3.72 -0.53 3.77 0.52 2.81 -0.01 2.40
30 1.97 11.83 -0.49 4.98 0.52 4.23 -0.56 4.49
45 1.26 5.12 0.09 3.78 1.78 6.99 0.27 3.59
60 0.93 4.15 -0.29 3.04 0.45 3.18 -0.25 2.47
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Appendix C

Duct Flows

The channels in the network model presented in section 3.2 are assumed to have a
constant circular shaped cross–section. The pressure gradient is constant in channels
with a constant radius (for the stationary, incompressible flow that is assumed here).
Hence, linear elements can be applied in the finite element discretisation. The radii of
the channels are based on the dimensions of the SYD. A derivation of the equivalent
radii is presented here.

The flow in the channel is one–dimensional. The solution of the axial fluid velocity
u is found by solving the impulse equation on an infinitesimally small part of the
flow domain, as depicted in figure C.1. The equations are derived in the cylindrical
coordinates (x, r, θ) rather than in the cartesian coordinates (x, y, z).

x

r

p 2πrδr
(
p + dp

dxδx
)

2πrδr
2π (r + δr) δx

(
τ + dτ

dr δr
)

2πrδxτ

u(r, θ)
r

δx

δr

Domain edge

Domain edge

(a) (x, r)–plane

rδr

θ

Domain edge

Domain edge

(b) (r, θ)–plane

Figure C.1: The impulse acting on an infinitesimally small part of the flow domain. p:
pressure; τ : shear stress; (x, r, θ): cylindrical coordinates; δ: infinitesimally small part.
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The total impulse on the infinitesimal small part is given by:

p πrδr −
(

p +
dp

dx
δx

)
2πrδr + 2πrδxτ − 2π (r + δr) δx

(
τ +

dτ

dr
δr

)
=

−2πδxδr r
dp

dx
r − 2πδxδr r

dτ

dr
− 2πδxδrτ − 2πδxδr

dτ

dr
δr =

−2πδxδr

(
r
dp

dx
+

d(τr)
dr

)
= 0.

(C.1)

The higher order term (last term on the second line of (C.1)) is neglected to obtain
the final result. The constitutive equation:

σd = 2µD, (C.2)

and the definition of the deviatoric rate of deformation D:

D =
1
2

(u ∇ + ∇u) , (C.3)

are substituted in the part between brackets of the last equation of (C.1), resulting
in:

τ = −µ
du(x, r, θ)

dr
. (C.4)

r
dp

dx
− µ

d
dr

(
r
du(x, r, θ)

dr

)
= 0. (C.5)

The velocity profile u(x, r, θ) is solved by a double integration over r, leading to the
general solution, formulated as:

u(x, r, θ) =
1
4µ

dp

dx
r2 + ψ, (C.6)

∇2ψ = 0, (C.7)

with u(x, r, θ) the fluid velocity in axial direction, µ the viscosity and ψ an arbitrary
function. The problem is now reduced to finding the function ψ, id est solving a
homogeneous second order partial differential equation. The general solution for ψ is
[112]:

ψ = a0 + b0 ln r+
∞∑

k=1

(
akrk cos kθ + bkrk sin kθ + ckr−k cos kθ + dkr−k sin kθ

)
.

(C.8)

The coefficients in this general function depend on the shape of the domain and the
boundary conditions. Here, only the function representing the flow in a channel with
a circular cross–section is relevant. This velocity profile is represented by:

u(x, r, θ) =
r2 − r2

out(x)
4µ

dp

dx
, (C.9)
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with rout(x) the radius of the channel, that can vary along the axial coordinate x.
The flow Φ through a channel is found by integrating the velocity profile over the
cross–sectional area A of the channel:

Φ =
∫
A

u(x, r, θ) dA =

2π∫
θ=0

rout(x)∫
r=0

u(x, r, θ)rdrdθ. (C.10)

Substitution of (C.9) in (C.10) leads to:

Φ =
πr4

out(x)
8µ

dp

dx
. (C.11)

The flow in the channel is constant, since the fluid is incompressible. It is therefore
possible to rewrite (C.11) and solve the resulting equation for the pressure:

dp = −8µΦ
π

r−4(x)dx; (C.12)

p(x) = −8µΦ
π

L∫
x=0

r−4(x)dx, (C.13)

with L the length of the channel. The integral in (C.13) cannot be calculated
analytically in all cases. However, an analytical solution is available provided the
function rout(x) is either a polynomial or can be approximated by a polynomial (for
example by means of a Taylor series approximation). Here, a linear function for the
radius is employed, based on the wedged shape of the SYDs. The resulting channel
is depicted in figure C.2.

0 L

r1 r2

x

r(x)

fibre bundle

fibre bundle

Figure C.2: A linearly varying channel radius is used to describe the shape of the SYD in
the plane of the fabric.

The function describing the linearly varying channel radius, with radii r1 at x = 0
and r2 at x = L is given as:

r(x) =
r2 − r1

L
x + r1, (C.14)
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This equation is substituted in the integral in (C.13), which is subsequently solve.
The solution of the pressure p(x) reads:

p(x) = − 8µΦL

3π

(
r2 − r1

L
x + r1

)3

(r2 − r1)

; (C.15)

The pressure drop over the channel equals:

∆P = p(x)
∣∣
x=L

− p(x)
∣∣
x=0

= − 8µΦL

3πr3
2 (r2 − r1)

+
8µΦL

3πr3
1 (r2 − r1)

. (C.16)

Rearranging the variables in (C.16) results in an expression for the flow Φ, that is
compared to (C.11), with the outer radius rout replaced by the equivalent radius rE :

Φ =
3πr3

1r
3
2

8µ (r2
2 + r1r2 + r2

1)
∆P

L
=

πr4
E

8µ

∆p

L
(C.17)

Note that the pressure gradient is expressed as the pressure drop ∆p divided by the
channel length L. The radius of a channel, that has an equal resistance compared to
a channel with a linearly varying channel radius, is found to be:

rE =
(

3r3
1r

3
2

r2
1 + r1r2 + r2

2

) 1
4

. (C.18)

Note that r(x) defined in (C.14) is replaced by the hydraulic radius for a channel with
a non–circular cross–section. The hydraulic radius is:

rh(x) =
2A(x)
P(x)

=
πr(x)2

πr
=

b(x)h(x)
(b(x) + h(x))

, (C.19)

with b(x) and h(x) the width and height, defined as functions of the axial coordinate.
The relation between the equivalent radius rE of the channel and the permeability of
the channel K is found by comparing (C.17) (or (C.11)) with Darcy’s law:

Φ =
πr4

E

8µ

dp

dx
=

K

µ

dp

dx
⇒ K =

πr4
E

8
. (C.20)

This equation is used to determine the individual channel permeabilities in the
network formulation, with rE as defined in (C.18), derived using the hydraulic radius
(C.19) to determine the radii r1 and r2. The height is assumed constant, h(x) = h,
and the width linearly variable along the axial coordinate, analogously to (C.14).



Appendix D

Finite Element Discretisation

A finite element discretisation [115, 116] was implemented to solve the permeability of
the network, as was explained in chapter 3. Some additional comments on the finite
element formulation are collected in this appendix.
The system of nodes and element representing the flow domain is depicted in figure
D.1. The figure shows a set of six repetitive blocks, indicated by the dashed lines.
The dimensions of a repetitive block are A×B, id est for the studied fabrics roughly
5×2mm.
The linear element interpolation function N(x) that is used, reads:

N(x) = {1 − x, x}T
, (D.1)

with x the normalised coordinate between two adjacent nodes. The method of
Galerkin [115, 116] was used, combined with Darcy’s law as the constitutive equation.
The resulting system of equations is:∫

∂N

∂x

K

µ
· ∂p

∂x
dx =

∫
∂N

∂x

K

µL

∂N

∂x
dx · p = M · p = ϕ, (D.2)

with p the vector containing the nodal pressures, ϕ the vector containing the nodal
fluxes and M the system matrix.
The finite element discretisation is implemented in Matlab c©. A direct solving
routine is employed, combined with a Jacobi–preconditioner [117] to control the
condition of the system matrix M .
The matrix M is constructed by superposition of the sub matrices:

M =
NE∑
e=1

M
(e)
sub; (D.3)

M
(e)
sub = P (e) · ∂N (e)

∂x

K(e)

µL(e)

(
∂N (e)

∂x

)T

·
(
P (e)

)T

, (D.4)
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Figure D.1: Elements (lines) and nodes (dots with corresponding numbers) representing the
network of flow channels. The dashed lines indicate the repetitive blocks of the system. The
encircled nodes correspond to the centres of the SYDs.

with P (e) a NDOF × 2 matrix with:

P (e)(i, 1) = 1 i = first node of element e;

P (e)(j, 2) = 1 j = second node of element e;

P (e)(k, 1) = P (e)(k, 2) = 0 k �= i ∧ k �= j.

(D.5)

The matrix M is a band matrix. This allows efficient storage of the matrix, which
is essential if the number of degrees of freedom becomes large. The total number of
nodes and degrees of freedom (DOF) Ntot equals:

Ntot = (3N1 + 1) × N2 + N1 + 1, (D.6)

for a system consisting of N1 × N2 repetitive blocks.
The condition of the matrix affects the accuracy of the results. The condition of the
matrix depends partly on the variation of the absolute values in the matrix. A large
ratio between the largest number and the smallest number results in a large condition
number (read: a poor condition).
Applying the boundary conditions results in unit values on the diagonal of the matrix1.
The condition of the matrix is consequently rather poor. Therefore the matrix is

1The channel permeability values are of the order of 10−12 m4, see section 3.1.2.
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scaled prior to applying the boundary conditions. A Jacobi preconditioning of the
matrix scales the elements in the matrix such that the values on the diagonal equal
1. Applying the Jacobi preconditioning [117] results in the following steps:

1. Given M · p = ϕ, calculate D = diag (M);
2. Scale the element matrix: M̂ =

√
D−1 · M ·

√
D−1;

3. Scale the right hand side vector: ϕ̂ =
√

D−1 · ϕ;
4. Solve p̂ from M̂ · p̂ = ϕ̂;
5. Scale the solution to obtain the solution of the original system: p =

√
D−1 · p̂.

The condition of the matrix significantly improves if the scaling is applied. However,
the condition number is still relatively high for larger matrices. In practice, this
implies that the size of the network that can be analysed is limited by the condition
number of the system matrix M . The accuracy ε of the solution is related to the order
of the condition number ζ and the order of the convergence tolerance e according to:

O(ε) = O(e) + O(ζ) (D.7)

The convergence tolerance of direct solvers is the machine precision, which is 10−16.
An accuracy of 10−10 results for a condition number of O(105).
The condition number ζ of the element matrix M is plotted in figure D.2. The
condition number increases rapidly with increasing number of degrees of freedom.
However, systems up to 4·104 degrees of freedom can be solved with sufficient accuracy
(extrapolated condition number ≈ 4 · 109, the dashed line in figure D.2 represents the
extrapolation).

1 2 3 4

x 10
4

10
−20

10
−10

10
0

10
10

Ntot [-]

ζ
[-
]

Figure D.2: The averaged condition number (nsets = 5, npermu = 5) of the element matrix
versus the number of degrees of freedom. The network size varies from 1 to 20 times the base
configuration. The dotted line is an extrapolation.
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Appendix E

Pressure Field During
Impregnation

The pressure field inside the mould is derived in this appendix. The resulting force
that is exerted on the mould, results in a deflection of the mould. The deflection of
the mould is undesirable, since it is generally not measured during the measurement.
Moreover, the permeability strongly depends on the fibre content. Hence, unexpected
results may be observed if the mould deflection is not controlled.
A field in which mould deflection is as inevitable as wanted, is the field of Resin
Infusion under Flexible Tooling. The varying cavity height needs to be accounted for
explicitly, as for example explained by Kessels [132].
The pressure field is derived by substitution of Darcy’s law in the continuity equation,
leading to a differential equation which is solved for the pressure p. Darcy’s law reads:

Φ =
K

µ
· ∇p, (E.1)

with Φ the volumetric flow, K the permeability tensor, µ the dynamic viscosity of
the fluid and ∇p the pressure gradient. Hence, it hence follows that:

∇ · u = ∇ ·
(

K

µ
∇p

)
= 0 → ∇2p = 0. (E.2)

Note that a scaling of the axis is required in case of an anisotropy material. The
boundary conditions to solve the differential equation read:

p
∣∣
x=x0

= Pinj ;

p
∣∣
x=xf

= 0,
(E.3)

where the subscript 0 refers to the start position and the subscript f to the location
of the flow front. The pressures are relative to the ambient pressure. The pressure
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field in case of a line injection is derived as:

∂2p

∂x2
= 0; (E.4)

p(x) =
xf − x

xf − x0
Pinj , (E.5)

with x the flow direction of the fluid. The pressure field in case of a radial injection
is found applying polar coordinates, rewriting (E.4) to:

1
r

∂

∂r

(
r
∂p

∂r

)
= 0; (E.6)

p(r) =
ln rf − ln r

ln rf − ln r0
Pinj =

ln r
rf

ln r0
rf

Pinj . (E.7)

x1x2

p

x0

xf

-W
2

W
2

0

Pinj

(a) Line injection.

x1x2

p

−rf

rf

−rf

rf

0

Pinj

r0

(b) Radial injection.

Figure E.1: Pressure fields for linear and radial injection. W is the width of the mould, x0

is the location of the injection line, r0 is the radius of the injection point, xf and rf are the
linear and radial distances to the flow front.

The pressure fields for a line injection and a radial injection are depicted in figure
E.1. The pressure gradients in the mould for linear and radial injection are given by:

∂p

∂x
= − 1

xf − x0
Pinj ; (E.8)

∂p

∂r
= − 1

r ln r0
rf

Pinj , (E.9)

respectively. The pressure gradient is constant for linear injection, whereas it is
proportional to the inverse of the radius for a radial injection. This leads to large
differences in the fluid flow and a less stable flow (irregular shape of the flow front,
constantly changing its irregularity as the flow front advances). Consequently, the
reproducibility of the radial injection technique is more prone to inaccuracies in
the preform than the linear injection technique. Small deviations near the centrally
located injection point can cause relatively large deviations in the flow front at larger
distances from the injection point.



Appendix F

Permeability 1D Flow

The permeability tensor is derived based on three individual measurements in case of
a one–dimensional permeability experiment. The mathematics required to determine
the principal permeabilities based on the three measured permeability values is
presented here.
The three individual measurements are performed with different orientations of the
fabric with respect to the coordinate system of the mould. The fabric orientation is
the angle of the machine direction of the fabric with respect to the flow direction in
the mould.
Let xG be the coordinate system of the mould and xP the principal coordinate
system, as depicted in figure F.1. The yet unknown angle θ is the angle between both

0 xG
1

xG
2

xP
1

xP
2

K1

K2

θ

K0

K45

K90

Figure F.1: The principal permeabilities K1 and K2 are calculated based on the three
measured permeabilities K0, K45 and K90. The angle θ is the angle between the principal
directions xP and the global coordinate system xG.
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coordinate systems. Any set of three mutually different fabric orientations could be
used, but in practice the orientations 0o, 45o and 90o are used. Hence, the measured
values K0, K45 and K90 are obtained from the measurements.
The three measured permeabilities K0, K45 and K90 define an ellipse, which major
and minor axis correspond to the principal directions xP

1 and xP
2 respectively. This

ellipse can be described in coordinates of the global coordinate system (xG) and in
the coordinates of the principal coordinate system (xP ). Moreover, the principal
directions can be expressed in terms of the global directions. This is sufficient to
solve the principal permeabilities in terms of the three measured permeabilites.
The function describing an arbitrarily oriented ellipse reads:

a1

(
xG

1

)2
+ a2x

G
1 xG

2 + a3

(
xG

2

)2
= 1, (F.1)

with ai constants. (Note that the origin of the ellipse corresponds to the origin of
the global coordinate system). The function describing the same ellipse in principal
coordinates reads: (

xP
1

K1

)2

+
(

xP
2

K2

)2

= 1. (F.2)

The relation between the two coordinate systems is given by:

xP = R · xG, (F.3)

with R the rotation matrix:

R =
[

cos θ sin θ
−sin θ cos θ

]
. (F.4)

The measurements provide three points, in global coordinates, on the ellipse:

xG
(1) =

{
K0, 0

}
;

xG
(2) =

{
1√
2
K45, 1√

2
K45

}
;

xG
(3) =

{
0,K90

}
.

(F.5)

The coefficients ai are determined with the coordinates defined in (F.5):

a1

(
K0

)2
+ a2K

0 · 0 + a302 = 1 ⇒ a1 =
1

(K0)2
;

a1

(
K45

√
2

)2

+ a2

(
K45

√
2

)2

+ a3

(
K45

√
2

)2

= 1 ⇒ a2 =
2

(K45)2
− 1

(K0)2
− 1

(K90)2
;

a102 + a2 · 0 · K90 + a3

(
K90

)2
= 1 ⇒ a3 =

1
(K90)2

.

(F.6)
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The coefficients ai can also be expressed in terms of the principal permeabilities. The
principal coordinates in (F.2) are expressed in the global coordinates:(

xG
1 cos θ + xG

2 sin θ

K1

)2

+
(

xG
2 cos θ − xG

1 sin θ

K2

)2

= 1, (F.7)

and after the terms in the equation are rearranged:((
cos θ

K1

)2

+
(

sin θ

K2

)2
)

xG
1 +

(
1

K2
1

− 1
K2

2

)
2 sin θ cos θ xG

1 xG
2 +((

sin θ

K1

)2

+
(

cos θ

K2

)2
)

xG
2 = 1, (F.8)

from which the solution of ai follows as:

a1 =
(

cos θ

K1

)2

+
(

sin θ

K2

)2

;

a2 =
(

1
K2

1

− 1
K2

2

)
2 sin θ cos θ;

a3 =
(

sin θ

K1

)2

+
(

cos θ

K2

)2

.

(F.9)

Subtracting a2 from a1, using both (F.6) and (F.9), leads to the equality:(
cos2 θ − sin2 θ

)( 1
K2

1

− 1
K2

2

)
=

1
(K0)2

− 1
(K90)2

. (F.10)

Substitution of (F.10) in the solution for the coefficient a2 in (F.9) and comparing it
to the solution of (F.6) gives:

sin 2θ

cos 2θ

(
1

(K0)2
− 1

(K90)2

)
=

2
(K45)2

− 1
(K0)2

− 1
(K90)2

⇒

tan 2θ =

(
2

(K45)2
− 1

(K0)2
− 1

(K90)2

)( (
K0

)2 (
K90

)2
(K90)2 − (K0)2

)
.

(F.11)

Similarly, the summation of the coefficients a1 and a2, using both (F.6) and (F.9),
results in:

1
K2

1

+
1

K2
2

=
1

(K0)2
+

1
(K90)2

. (F.12)

This can be used to express K2 in terms of K1, K0 and K90, which is then substituted
in solution of a1:

cos2 θ

K2
1

+

(
1

(K0)2
+

1
(K0)2

− 1
K2

1

)
sin2 θ =

1
(K0)2

. (F.13)
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The expression for K1 is obtained after some rearrangements:

K1 =

√√√√ (
K0

)2 (
K90

)2 cos 2θ

(K90)2 cos2 θ − (K0)2 sin2 θ
. (F.14)

The solution for K2 is found similarly, by expressing K1 in terms of K2, K0 and K90.

The three equations to determine the orientation of the principal directions and the
principal permeabilities, based on the three measured permeabilities K0, K45 and
K90, are:

θ =
1
2

arctan

⎛⎝2
(
K0

)2 (
K90

)2 − (
K45

)2 (
K90

)2 − (
K0

)2 (
K45

)2
(K45)2

(
(K90)2 − (K0)2

)
⎞⎠ ; (F.15)

K1 =

√√√√ (
K0

)2 (
K90

)2 cos 2θ

(K90)2 cos2 θ − (K0)2 sin2 θ
; (F.16)

K2 =

√√√√ (
K0

)2 (
K90

)2 cos 2θ

(K0)2 cos2 θ − (K90)2 sin2 θ
. (F.17)

The anisotropy α reads:

α =
K2

K1
=

√√√√(
K90

)2 cos2 θ − (
K0

)2 sin2 θ

(K0)2 cos2 θ − (K90)2 sin2 θ
. (F.18)

Note that K45 can be written in terms of K0 and K90, if the orientation of the
principal directions correspond to the global directions, id est θ = 0. The coefficient
a2 in (F.6) equals zero in that case, from which directly follows:

2
(K45)2

− 1
(K0)2

− 1
(K90)2

= 0 → K45 =
√

2K0K90√
(K0)2 + (K90)2

. (F.19)

Let K0 = K1 and K90 = K2, which follows from θ = 0. The expression (F.19) can
then be rewritten to:

K45 =
α
√

2√
1 + α2

K0. (F.20)

with the anisotropy α defined as:

α =
K2

K1
. (F.21)

The permeability K45 equals K0 if α equals 1, which is expected for isotropic material.
Similarly, it shows that a high value of K45 (read: higher than K0 or K90) can only
be found if the principal directions are rotated with respect to the directions of K0

or K90, since the fraction in (F.20) cannot exceed a value of one. The rotation
approaches 45o if K45 is large compared to K0 and K90.



Appendix G

Permeability 2D Flow

The applied method to calculate the permeability from a two–dimensional flow is
based on the assumption that the shape of the flow front is elliptical. The position of
the flow front is analysed at a number of points in time and elliptical coordinates are
employed to determine the permeability. The theory can be found in [122, 158–161].
An elliptical flow front is depicted in figure G.1. It shows all the relevant parameters:

– The global coordinate system xG, generally aligned with the rig, but strictly
taken arbitrarily defined;

– The principal coordinate system xP of the ellipse, also referred to as the local
coordinate system;

– The major and minor radii r of the ellipse;

– The angle θ between the two coordinate systems;

– The translation x0 between the two coordinate systems;

– The radius r0 of the inlet;

– The position of the flow front xf .

The procedure to derive the principal permeabilities and their orientation from the
flow front, acquired at a series of (equidistant) moments in time ti, involves the steps:

1. Determine the major and minor radii r and the orientation θ of the flow front
ellipses at the different moments in time.

2. Apply elliptical coordinates and express Darcy’s law and the major and minor
radii in these coordinates.

3. Fit an anisotropy that applies best for all acquired flow front ellipses.

4. Calculate the major permeabilities K1 and K2 from the fitted anisotropy.

The different items of the procedure are discussed separately.
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0 xG
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xG
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xP
1

xP
2

r1

r2

θ

x0
1

x0
2

r0

xf

Figure G.1: Elliptical flow front, with major and minor radii (r1, r2) in an arbitrarily defined
global coordinate system (xG

1 , xG
2 ). The principal directions of the ellipse correspond to the

local coordinate system (xP
1 , xP

2 ), rotated over an angle θ with respect to the global coordinate
system and translated over (x0

1, x
0
2). r0 is the radius of in the injection point and xf is the

position of the flow front.

Least Squares Fit of an Ellipse The ellipse is fitted through the flow front
position points employing a least squares algorithm for multiple variables. The
procedure is explained in detail in [122].
The general description of an ellipse oriented in an arbitrary direction and with an
arbitrary offset x0 (see figure G.1) is:

a1χ
2
1 + a2χ1χ2 + a3χ

2
2 + a4χ1 + a5χ2 = 1, (G.1)

with:
χ = xG − x0. (G.2)

In other words the ellipse is described by a second order polynomial ℘2(χ) with
coefficients a, which allows us to write this formula in a somewhat more compacted
form:

℘2(χ) · a = 1. (G.3)

Note that ℘2 is defined as a vector. Its length corresponds to the number of basic
polynomial functions and thus to the number of coefficients a.
A best fit is obtained if the sum of the squared deviations in all measured positions
with respect to the ellipse is minimal:

minf(a) = min

(
n∑

i=1

(℘2(χi) − 1)2
)

. (G.4)

The minimum of f(a) is found by evaluation of the partial derivatives:

∂f

∂a
= 0. (G.5)
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Solving the resulting system of linear equations yields the coefficients a.
Alternatively the ellipse can be expressed in the principal directions xP as:(

xP
1

r1

)2

+
(

xP
2

r2

)2

= 1, (G.6)

with r1 and r2 the major and minor radii of the ellipse (as indicated in figure G.1).
This relation is equal to (G.1), since both describe the same ellipse, but in a different
coordinate system. The principal coordinates xP can be expressed in the arbitrary
coordinates xG according to:

xP = R · χ = R · (xG − x0
)
, (G.7)

with x0 a linear translation and R the rotation matrix.

R =
[

cos θ sin θ
−sin θ cos θ

]
. (G.8)

Substituting this relation into (G.1) yields – after some rearrangements – the solution1

for the ellipse radii r, the angle θ between the arbitrary and principal direction and
the linear translation x0:

r =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

√
1 − ℘2(x0) · a

a1 cos2 θ + a2
2 sin 2θ + a3 sin2 θ√

1 − ℘2(x0) · a
a1 sin2 θ − a2

2 sin 2θ + a3 cos2 θ

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ ; (G.9)

θ =
1
2

arctan
(

a2

a1 − a3

)
; (G.10)

and [
2a1 cos θ + a2 sin θ 2a3 sin θ + a2 cos θ
−2a1 sin θ + a2 cos θ −a2 sin θ + 2a3 cos θ

]
· x0 = −RT ·

{
a4

a5

}
. (G.11)

As discussed above, the orientation and consequently principal directions of the
ellipses approximating the flow front position, are calculated from the experimental
data. As a result, the calculated orientation of the ellipses can show changes during
the progress of the experiment, as can the translation (or: the location of the centre).
Theoretically, the orientation of the ellipse is undefined for unsheared orthogonal
material (id est K1 = K2, a circular flow front) and the centre coincides exactly with
the centre of the inlet. In practice the flow front is never a perfect circle and the
least square approximation finds an ellipse with a certain orientation and a certain
translation of the centre. It is suggested to fix the orientation and centre of the ellipse

1Compare the results obtained in appendix F, which is essentially the same, except for the linear
translation x0
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prior to fitting the measured data points and compare these results with the ‘free’ fit.
A large deviation either suggest a poor fit, or local variations in the permeability.
A similar procedure can be followed for sheared fabrics: the orientation of the ellipse
corresponds to the bisectrix of the smallest angle between the two fibre directions for
balanced fabric, according to Lai and Young [151].
The second order polynomial (G.1) (or (G.3)) reduces to:

a1

(
xG

1

)2
+ a2x

G
1 xG

2 + a3

(
xG

2

)2
= 1. (G.12)

Flow Front in Elliptical Coordinates A transformation to elliptical coordinates
is applied. The mathematics behind coordinate transformation can – amongst others
– be found in Happel [109].
The continuity equation, combined with Darcy’s law in principal coordinates for an
anisotropic material is represented by:

K · ∂2P ′

∂ (xP )2
= 0, (G.13)

with P ′ the dimensionless pressure, defined as:

P ′ =
P − Pf

∆P
. (G.14)

The partial differential equation is reduced to a Laplace equation by applying the
scaling:

x′ =
{

α
1
4

α− 1
4

}
· x. (G.15)

The anisotropy of the permeability is α: the ratio between the second and the first
principal permeabilities, or the ratio between the squared minor and major axes of
the ellipse:

α =
K2

K1
=
(

r2

r1

)2

. (G.16)

Thus, (G.13) reduces to:
∇2P ′ = 0, (G.17)

with the boundary conditions:

P =P0 at

{
α− 1

2

α
1
2

}
·
(

x

r0

)2

= 1;

P =Pf at Ω′
f (x, t).

(G.18)

The coordinate transformation to elliptical coordinates ξ is:

x′
1 =Lf cosh ξ cos η;

x′
2 =Lf sinh ξ sin η,

(G.19)



The Structure–Permeability Relation 205

with Lf half of the focal length of the inlet ellipse:

Lf = r0

(
α− 1

2 − α
1
2

) 1
2

. (G.20)

with r0 the radius of the inlet and α the anisotropy of the principal permeabilities K1

and K2, as defined in (G.16).
A plot of the elliptical coordinates in a cartesian coordinate system is presented in
figure G.2. The ellipses correspond to constant ξ and the lines to constant η. The
two foci of the ellipse (ξ → 0, η = 0 ∧ η = π) are indicated by a dot.

η = 0

η = 1
6π

η = 1
3π

η = 1
2π

η = 2
3π

η = 5
6π

η = π

η = 7
6π

η = 4
3π

η = 3
2π

η = 5
3π

η = 11
6 π

η = 2π

2Lf

ξ = 1

ξ = 1.5

ξ = 2

x1

x2

0

Figure G.2: The two–dimensional elliptical coordinates (ξ, η) in a (x1, x2) cartesian
coordinate system. The foci x = (±Lf , 0) are indicated by a dot. The ellipses correspond to
a constant value of ξ and η ∈ [0, 2π], the outwardly directed lines to a constant value of η
and ξ ∈ [0,±∞].
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The coordinate transformation also affects the nabla (∇) and laplace (∇2) differential
operators:

∇ = hJ ·
(

∂

∂ξ

)
; (G.21)

∇2 = hJ2 ·
(

∂2

∂ξ2

)
, (G.22)

with hJ the metrical coefficient, that can be derive from:

1

hJ2
i

=
3∑

j=1

(
∂xj

∂ξi

)2

, (i = 1, 2, 3) (G.23)

hJ is equal for both direction ξ and η (and unity for x3) and written as single value
rather than a vector:

hJ =
1

Lf

(
sinh2 ξ + sin2 η

) 1
2

=
1

Lf

(
cosh2 ξ − cos2 η

) 1
2
. (G.24)

The Laplace equation (G.17) still holds, but now with respect to the elliptical
coordinates ξ and with the boundary conditions:

P = 1 at ξ = ξ0 = ln

(
1 + α

1
2

(1 − α)
1
2

)
;

P = 0 at Ω′
f (ξ, t),

(G.25)

with Ω′
f (ξ, t) the flow front boundary.

Darcy’s law, relating the superficial velocity u to the pressure gradient ∇P is written
as:

u = −Keff

µ
∇P, (G.26)

with Keff the effective permeability, defined as Keff =
√

K1K2 and µ is the fluid
viscosity. Substitution of the transformed nabla operator yields an expression of the
superficial flow u as a function of the pressure gradient in ξ and η direction:

u = −Keff∆P

µ
hJ∇P ′. (G.27)

The pressure gradient is now considered to be a function of ξ only2. This means that
the flow front is assumed to be perfectly elliptical. The pressure and pressure gradient

2This approximation is allowed according to Adams et al. [159], who compared the approximated
analytical solution with a numerical solution in which the pressure gradient in η–direction was not
neglected
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are assumed to reduce to:

P ′(ξ) =
ξf − ξ

ξf − ξ0
; (G.28)

dP ′

dξ
=

−1
ξf − ξ0

. (G.29)

Substitution of (G.28) in (G.27), yields an expression for the superficial velocity u:

u =
Keff∆P

µ

hJ

ξf − ξ0
; (G.30)

Secondly, the flow front velocity can be expressed as the time derivative of the
coordinates:

v =
dx

dt

∣∣∣∣
ξ=ξf

=
(
hJ
)−1 dξ

dt

∣∣∣∣
ξ=ξf

. (G.31)

Again, the η dependence is neglected. Combining (G.30) and (G.31) results in a first
order differential equation of the flow front coordinate ξf . Note that the superficial
velocity has to be divided by the porosity φ.

v =
u

φ
. (G.32)

dξf

dt
=

Keff∆P

µφ

(
hJ
)2

ξf − ξ0
. (G.33)

with

ξf = ξ0 at t = 0. (G.34)

A solution of this differential equation is:

F (ξf , η) = (ξf − ξ0)
(

sin 2ξf

4
+

ξf

2

)
− cos2 η (ξf − ξ0)2

2
+

cosh 2ξ0 − cosh 2ξf

8
+

ξ2
0 − ξ2

f

4
=

α

1 − α

K1∆P

φµr2
0

t. (G.35)

Note that the function value of F (ξf , η) is not constant on the perimeter of the flow
front ellipse.

Fit of the Anisotropy The flow front ellipses, obtained from the images of the
digital video, allow the evaluation of F (ξf , η) in different points. The function
F (ξf , η) can be evaluated in a number of specific points, namely at the locations
xP =

{
r1, 0

}
and xP =

{
0, r2

}
. The elliptical extents ξ can be derived explicitly for

these coordinates:

xP =
{
r1, 0

}→ ξ =

{
arccosh

α
1
4 r1

Lf
, 0

}

xP =
{
0, r2

}→ ξ =

{
arcsinh

α− 1
4 r2

Lf
,
π

2

}
,

(G.36)
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The elliptical extents of the flow front ellipses at all available points in time are
evaluated employing (G.36). The function values of F (ξf , η) are proportional to the
time according to (G.35). The function values of F (ξf , η) based on the experimental
data do not necessarily lie on a straight line, as is shown in figure G.3. The
deviation arises from the varying anisotropy and orientation of the ellipses, which
were mentioned earlier. Moreover, the flow is unstable in the beginning of the
measurement, resulting in a non–linear behaviour of F (ξf , η) during the first seconds
of the measurement. Generally, a stable situation is obtained after 5–10 seconds.

10 20 30 40
0

100

200

300

400

t [s]

F
(ξ

f
,η

)
[-
]

Figure G.3: The function values F (ξf , η) versus the time (�: F (ξf , η) for xP =
{
r1, 0

}
,

�: F (ξf , η) for xP =
{
0, r2

}
). The solid line indicates the fitted, straight line, that follows

from the theory. (Data from fabric B1 – Saertex ±45o)

The anisotropy α in the last function of (G.35) applies to all flow front ellipses, which
not necessarily corresponds to the value of the anisotropy calculated by the fitting
procedure. An optimisation procedure is employed to find an overall anisotropy that
fits best with the ellipse anisotropies. The anisotropy as defined in (G.16) is therefore
relaxed: α in (G.20) is substituted by an iterated anisotropy α̃ for all ellipses. The
aim of the optimisation procedure is to find an anisotropy α̃ for which the deviation
between the function values of F (ξf , η) and the straight line Ftheo(t) = a1 · t+a2 (the
straight line in figure 4.2) is minimal, with a1 the slope of the line and a2 a constant.
A least square approximation is employed for this purpose.

Major and Minor Permeability The function F (ξf , η) is then plotted as a
function of the time. The anisotropy has to be solved iteratively. The optimal
anisotropy minimises the deviation with the slope of the least square fitted line. The
slope a1 of the line is proportional to the permeability in the first principal direction:

a1 =
K1∆P

φµr2
0

α

1 − α
→ K1 =

a1φµr2
0

∆P

1 − α

α
. (G.37)

The minor permeability K2 is found by multiplying the major permeability with the
anisotropy, according to (G.16).
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Datasheets

H.1 Polyol

APPLICATIONS

• Negatives, moulds, masters and mock-ups using the unfilled product or filled with RZ
30150 mineral filler in order to limit exotherm and to get easy machining.

• Thermoforming masters using the product filled with RZ 209/6 aluminium powder in
order to increase thermal conductivity.

PROPERTIES
• Good impact resistance
• Fast demoulding
• Low shrinkage

• Low viscosity
• Easy–to–use mix ratio (1:1 by weight)
• High filler content possible while retaining a low

viscosity

Physical Properties

Mixing
Part A Part B Unfilled filled with

Composition Polyol Isocyanate mixing RZ 30150

Mixing ratio by weight 100 100 – 360
Aspect liquid liquid liquid liquid
Colour off–white light amber beige beige
Brookfield LVT viscosity at 25oC (mPa·s) 55 45 50 2700
Density of parts before mixing ISO 1675–85 0.91–0.97 1.07–1.13 – –
Density of cured mixing ISO 2781–88 – – 1.05–1.11 1.64–1.70
Pot life at 25oC on 200g (min) 3’20–3’40

Mechanical Properties at 23oC (1)

Unfilled Mixing filled
mixing with 360 phr

RZ 30150

Hardness ISO 868–85 Shore D1 70 82
Flexural modulus of elasticity ISO 178–93 MPa 1100 3900
Flexural strength ISO 178–93 MPa 42 46
Compressive strength ISO 604–93 MPa 38 54
Charpy impact resistance ISO 1791/D kJ/m2 25 –

(1): Average values obtained on standardised specimens/Hardening 14 hours at 60oC.

209



210 Datasheets

Thermal and Specific Properties at 23oC (1)

Unfilled Mixing filled
mixing with 360 phr

RZ 30150

Glass Transition Temperature T.M.A.–Mettler oC 80
Linear shrinkage (thickness 50mm) % – 0.23

Coefficient of thermal expansion T.M.A.–Mettler 10−6 K−1 – 76
[+20,+70]oC

Demolding time at 25oC
– thickness:10mm min. 45
– thickness:40mm min. 30

PROCESSING CONDITIONS
Before use part A (polyol) must be mixed until both colour and aspect become homogeneous.
Both parts (polyol and isocyanate) must be mixed at a temperature above 18oC according to
the mix ratio indicated on this technical data sheet. For casting thicknesses above 5mm it is
recommended to add a filler as follows:

• up to 360 phr of RZ 30150 filler (mineral filler)
• up to 400 phr of RZ 209/6 filler (aluminium powder)

for thicknesses no more than 40 mm.

STORAGE CONDITIONS
Shelf life of both components is 12 months in a dry place and in their original unopened
containers at a temperature between 15 to 25oC. Isocyanate is UV sensitive. It must be kept
in its original container protected from the light. Any open can must be tightly closed under
dry inert gas (dry air, nitrogen, etc.).

HANDLING PRECAUTIONS
Normal health and safety precautions should be observed when handling these products:

• ensure good ventilation
• wear gloves and safety glasses

For further information, please consult the product safety data sheet.

PACKAGING
Part A
1×4.5kg
6×0.9kg
1×18.0kg
1×50.0kg

Part B
1×4.5kg
6×0.9kg
1×18.0kg
1×50.0kg

GUARANTEE

Information of our technical data sheet is based on our present knowledge and the result of tests

conducted under precise conditions. It is the responsibility of the user to determine the suitability

of AXSON products for his application under his own conditions. AXSON refuses any guarantee about

the compatibility of a product with any particular application. AXSON disclaims all responsibility for

damage from any incident which results from the use of these products. The guarantee conditions are

regulated by our general sale conditions.
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H.2 Ardrox BioPen p6f5

Please read the technical information and safety data sheets before use.

CONTENTS

– R36/38. Irritating for the eyes and the skin.
– S24/25. Avoid contact with the eyes and the skin.
– S26. Flush extensively with water and apply for expert medical advice in case

of contact with the eyes.
– S37/39 Wear appropriate gloves and a protection for the eyes and face.

COMPANY INFORMATION

Company : Chemetall
Country : Netherlands
Streetaddress : IJsselstraat 41
Postal Code : NL-5347 KG
City : Oss
Phone : +31 412 681 888
Fax : +31 412 631 675
Web : http://www.chemetall.be
Direct Contact : info.benelux@chemetall.com
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Appendix I

Viscosity Measurements

I.1 Viscosity & Temperature Dependence

The viscosity of Polyol was measured as a function of the temperature. A plate–
plate viscosity measurement in oscillating mode was used. The parameters for the
measurement are presented in table I.1.

Table I.1: Measuring conditions and settings for the plate-plate viscosity measurement
performed by the NLR.

Diameter plates [mm] 40
Gap [µm] 200
Mode oscillating
Frequency [Hz] 1.59
Target strain [-] 0.375
Temperature range [oC ] 20–40

The temperature is varied between 20oC and 40oC, with steps of 5oC. The
temperature was kept constant for a period of 10–15 minutes, during which the actual
measurement is performed. A temperature rate of 1oC/minute was applied to increase
the temperature to the next level. The temperature profile during the measurement
is depicted in figure I.1. The time spans over which the viscosity is determined for
each temperature level, is indicated by ∆ti.
The viscosity is averaged over the time span in which the temperature is kept at a
constant level. The sample rate of is approximately 1/15Hz, resulting in 20 to 40 data
points over which the viscosity is averaged. The mean value of the viscosity for each
temperature is depicted in figure I.2. The variability is indicated by the error bars.
The variation s is defined as:

s =
t0.95(N − 1)σ√

N
, (I.1)
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Figure I.1: The temperature profile during the measurement. ∆ti refers to the time span
over which the viscosity is determined for the ith temperature level.

with t0.95 the student–t distribution with N − 1 degrees of freedom and a 95%
confidence interval, σ the estimated standard deviation and N the number of elements
in the set. The values of the means and variations are collected in table I.2.
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Figure I.2: The viscosity of Polyol as a function of the temperature. The error bars indicate
the variation on the measured mean for each temperature level.
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Table I.2: The viscosity for different temperatures. The mean value µ̄, variation s and
number of data points N at each temperature level T .

T [oC ] µ̄ [mPa·s] s [mPa·s] N [-]

20 23.64 0.38 22
25 17.87 0.40 22
30 13.91 0.59 45
35 11.59 0.96 19
40 9.02 0.59 20

I.2 Capillary Viscometer Measurements

The viscosity of the Polyol–BioPen mixture was measured using a capillary viscometer
(Schott Geräte, ref. no. 053 92). A schematic drawing of a capillary viscometer is
presented in figure I.3. A complete description of the measurement can be found in
[166, 167].
The time that the fluid level needs to drop from the upper timing mark (m1) to
the lower timing mark (m2) is a measure for the viscosity of the fluid. The entire
device is submerged in a water reservoir which temperature is controlled (≈20oC for
these measurements). A capillary with a diameter of 1.03mm was used (capillary ‘II’
[166, 167]), which is suitable for viscosities between 10 and 100mPa·s.
The relation between the time span t and the viscosity for the given capillary is
[166, 167]:

µ = 0.1003 · 10−6ρt, (I.2)

with ρ the density of Polyol which is 0.94×103kg·m−3. The density of the mixture is
unknown and is hard to determine, since the mixing ratio was only measured roughly.
The density of pure Polyol was used.
Three fresh samples were prepared (6:1, 12:1 and 28:1 volume ratio) and one sample
of used Polyol–BioPen mixture is measured (mixing ratio 25:1 by volume). Three
measurements were performed for each sample. The temperature of the water was
measured prior to each measurement. The results are presented in table I.3.

Table I.3: Measured viscosities of all samples (µ in mPa·s and T in oC).

6:1 12:1 28:1 25:1
µ T µ T µ T µ T

1 29.48 19.1 28.78 20.2 28.61 20.1 34.51 20.6
2 29.50 20.6 28.93 19.2 28.55 19.8 34.52 20.4
3 29.57 20.3 28.79 20.2 28.52 20.4 34.48 20.2

µ̄ 29.52 28.83 28.56 34.50
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1: Capillary tube
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4: Reservoir
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6: Dome–shaped top part

7: Capillary

8: Measuring sphere

9: Pre–run sphere

m1: Upper timing mark

m2: Lower timing mark

h: Mean hydrostatic head

Figure I.3: Schematic drawing of a capillary viscometer.

The mixing ratio hardly influences the viscosity. The time of usage of the mixture
has a stronger effect, which may either be caused by water absorption of the Polyol,
or by small particles in the mixture from the experiments (the sample was not filtered
after each time it was used). The mixture used in the experiments was: 1148.9 grams
Polyol and 51.8 grams Ardrox BioPen, which is roughly 25:1 by volume.



Appendix J

Data In–Plane Measurements

This appendix contains the experimental data of the experiments that were described
in chapter 4. The abbreviations for the fabrics refer to the following fabrics (as in the
main text):

B1 Biaxial ±45o tricot warp knitted fabric (Saertex)
B2 Biaxial 0o/90o tricot/chian warp knitted fabric (Saertex)
B3 Biaxial ±45o chain warp knitted fabric (Devold)
T Triaxial +45o/90o/-45o chain warp knitted fabric (Devold)
Q Quadriaxial +45o/0o/-45o/90o chain warp knitted fabric (Devold)
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J.1 NLR

Table J.1: The orientation θ of the machine direction of the fabric with respect to the tooling,
the measured pressure differences ∆Punsat and ∆Psat for the unsaturated and saturated flow,
the point in time tunsat at which the unsaturated permeability (activation of second pressure
transducer) is determined and the start of the saturated flow tsat and the flow rate Φ, the
(un)saturated permeabilities (Kunsat and Ksat) and the anisotropy α, including its upper and
lower limit.
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∆
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α
[-
]

α
[-
]

B3 0 1.49 1.45 630 795 0.27 9.63 11.9
0.81 0.71 540 795 0.27 6.35 7.07
0.77 0.70 555 780 0.28 6.24 7.05

45 0.01 0.01 – – 0.33 489.0 594.1

0.02 0.02 – – 0.44 511.3 356.8 0.97
+0.40
−0.32 1.02

+0.41
−0.33

0.02 0.02 – – 0.36 1173 321.9

90 0.70 0.66 – – 0.28 6.25 8.19
0.61 0.65 – – 0.25 6.80 8.27
0.49 0.44 – – 0.25 8.54 10.08

T 0 0.65 0.44 465 690 0.27 5.49 9.27
0.76 0.58 525 705 0.27 5.22 7.12
0.43 0.41 105 165 0.28 7.79 7.05

45 0.21 0.17 – – 0.27 19.70 27.70

0.17 0.13 – – 0.27 25.03 32.03 0.40
+0.15
−0.12 0.31

+0.17
−0.08

0.12 0.12 – – 0.26 31.40 38.65

90 1.82 1.72 330 525 0.27 2.18 2.43
1.74 1.56 390 540 0.27 2.42 2.59
1.39 1.17 360 555 0.27 2.89 3.44

Q 0 0.53 0.34 375 555 0.27 8.45 13.97
0.72 0.52 330 480 0.27 7.79 10.03
0.21 0.18 315 495 0.29 17.09 28.37

45 0.15 0.12 – – 0.26 31.38 40.66

0.14 0.14 – – 0.26 31.27 36.09 1.29
+0.71
−0.62 0.88

+0.78
−0.38

0.14 0.14 – - 0.27 33.36 37.22

90 0.41 0.37 525 750 0.28 14.24 14.97
0.42 0.37 525 714 0.28 13.18 14.12
0.35 0.31 555 705 0.28 15.56 16.62
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J.2 KU Leuven

Table J.2: Settings and measured injection pressure of the various measurements on the
fabrics B1, B2 and T using the KU Leuven test–rig (shear angle γ; cavity height hc; fibre
content Vf ; injection pressure Pinj, with averaged P̄ , variation σ) and the parameters (M0,
Mmax, t∗, a) of the power–law fit for the mass flow rate, including the relative error ε of the
fit.

Pinj [bar] Mass flow parameters
γ[o] hc [mm] Vf [%] P̄ σ M0 [kg] Mmax [kg] t∗ [s] a [-] ε [-]

B1 0 0.5 36.18 1.10 0.011 0 0.030 5.63 0.82 0.0062
0 0.5 36.18 1.10 0.017 0 0.057 3.89 0.64 0.0268
0 0.5 36.18 1.09 0.010 0 0.037 22.97 0.74 0.0187
0 0.5 36.18 0.61 0.011 0 0.056 4.37 1.51 0.0029

30 0.5 41.78 0.61 0.014 0 0.058 4.26 1.95 0.0034
30 0.5 41.78 0.61 0.011 0 0.055 3.72 1.30 0.0027
30 0.5 41.78 0.61 0.011 0 0.061 4.50 1.30 0.0040
45 0.5 52.17 0.62 0.012 0 0.071 10.83 1.09 0.0112
45 0.5 52.17 0.61 0.013 0 0.086 6.64 1.04 0.0093
45 0.5 52.17 0.62 0.011 0 0.070 12.51 0.99 0.1015

B2 0 0.5 36.97 1.10 0.011 0 0.038 3.23 0.72 0.0049
0 0.5 36.97 1.11 0.031 0 0.040 0.85 0.75 0.0037
0 0.5 36.97 1.10 0.031 0 0.027 5.64 0.77 0.0061
0 0.5 36.97 0.61 0.012 0 0.064 2.59 1.30 0.0047

30 0.5 42.68 1.09 0.016 0 0.078 2.93 1.91 0.0021
30 0.5 42.68 0.61 0.011 0 0.062 4.80 1.70 0.0035
30 0.5 42.68 0.61 0.014 0 0.064 5.61 1.47 0.0043
45 0.5 52.28 0.61 0.024 0 0.062 10.91 1.03 0.0287
45 0.5 52.28 0.61 0.012 0 0.063 10.21 1.07 0.0272
45 0.5 52.28 0.61 0.012 0 0.052 5.75 1.16 0.0102

T 0 4.0 56.25 2.03 – – – – – –
0 4.0 56.25 1.52 – – – – – –
0 4.0 56.25 1.52 – – – – – –
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J.3 UT

Table J.3: Settings and results of the measurements on the fabric B3 performed with the test–
rig of the UT (fibre content Vf ; cavity height hc; pressure drop ∆P ; permeability in machine
direction K0; volumetric flow Φ). The permeabilities between brackets are the equivalent
values for a fibre content of 56.69%. The superscript 1 refers to the permeability based on a
fit through all 6 data points, whereas the superscript 2 refers to the permeability based on a
fit through the last 4 data points only.

layers Vf hc ∆P [bar] K0 [m2]×10−9 Φ
[−] [%] [mm] unsat sat unsat1 unsat2 sat [m3·s−1]

1 50.28 0.6 0.56 0.50 0.75 (0.39) 0.92 (0.48) 2.56 (1.34) 1.56
1 50.28 0.6 0.57 0.51 0.76 (0.39) 0.90 (0.47) 2.88 (1.54) 1.75
1 50.28 0.6 0.65 0.57 0.65 (0.34) 0.85 (0.44) 1.53 (0.79) 1.04
1 50.28 0.6 0.67 0.56 0.76 (0.39) 0.88 (0.46) 2.64 (1.37) 1.76
1 50.28 0.6 0.72 0.62 0.86 (0.45) 0.96 (0.50) 5.17 (2.69) 3.82
2 54.85 1.1 0.85 0.69 0.44 (0.36) 0.54 (0.45) 0.64 (0.53) 0.97
2 54.85 1.1 0.61 0.54 0.41 (0.34) 0.53 (0.44) 0.49 (0.40) 0.59
2 54.85 1.1 1.04 0.83 0.38 (0.31) 0.53 (0.43) 0.90 (0.75) 1.65
4 57.45 2.1 1.62 1.10 0.29 (0.32) 0.45 (0.49) 0.91 (0.99) 4.22
4 57.45 2.1 1.51 1.12 0.44 (0.45) 0.53 (0.58) 0.86 (0.93) 4.03
4 57.45 2.1 1.46 1.04 0.45 (0.49) 0.57 (0.62) 0.78 (0.85) 3.41
4 57.45 2.1 1.49 1.02 0.46 (0.50) 0.55 (0.60) 1.03 (1.11) 4.39
4 57.45 2.1 1.48 1.10 0.40 (0.44) 0.50 (0.54) 1.07 (1.16) 4.96
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� ��� �

�� ��	��
�
� 	���� ��� ��%��� ������������ ���� ���� ���+������ ��� ���	�� %�� 	�%������ �
�
��� ���� ���	+

� 	����� ���	�. ��� ����	� %��� �� �

� ��� 	����� %����. �
� G�G�� ��
���	 ���� �� �
� �	� 2� �
� ������������ ����� ;
� ;���. �	 ���� 

� ��� �� �� ��������.
�

� 	�

� �� �� ������� �� ������ ��� �	 ��%��� ��� ���� %�� +��
�����	�� �
� ��
%������ +��� �� +�������� ��� ������ ���+���� �	 �
� +��
���������� 

��� %��
+�%��	� �� ���������� �

� �� ��� �������� ���	� �
� ���	���� �� ����������. ��� 
�
�
� ���� +���	� +�����
�� %�++�� 

� �� 	����	����� 
������� �
� �� 
�������
���� �� ��� %
�� �

��
��� �������������� �
� �� ���	� �
 �
� ��		�%��� ��� %������ ;

� ;���. %�� +��� �	
%�� 
+	����� ����� )��� ���
� %�� ��
����� �� �+���� �	 �� �� �������� 
�	 ���	�� ��
������. �

� ���
� ��. ����

� �� ��� ���� 

�+��
��. ���� �
� %�� ;�-� �����
�� ���
�	����� %����. �
� �� �� 	������� ���� �� %��� �
� %�� 
�	 ���	�� �� ������� �����.
+��
��� ���� �� +��� �
� �����
��� ��� �� ����	� +��� ���� ��� �� �� 
������� �
���.
�� �������%���� ��� �� �� �+���� %�+�. �� �� * �� ��
� �
� 

���;�%��� * 
�����
����	�

��� ����� 2�� ,+����� ��������-�
������ �

��� �������  ���
� "����� ������	 ���� ���+���� �� "����� ������
�� ����� ;��� ����������� ������. ��	�������� �� ��� ��������� %�����+
�� �������
�� �� ��%��� �
� ��� �����	�%����� �� ���� �� "����� %���� �� ��� ���� 	�%��
�� �� �������%��� ������ �

��

	� %�+ ��  ���
� "���� ��� ���� �����
������ 
�	 ��� ����������� �� 
	����� �
�. ����� 
����� ������	 �� ����� �
� ��
+�� %�� I�� ;��� ����� �����
J �%��	 %
������� ����
��� ���� ��� %������� ����.
������� ���� �� ���� �	��������  ���
�� Hot� vy vsegda prosili men�
pisat� po–gollandski, v �tot raz � napixu po–russki – ogromnoe spasibo
za plodotvornoe sotrudinqestvo, kotoroe, � nade�s�, my prodol�im i v
buduwem.∗

!
���� %�� )"� �
	 �
����� ,� ��
	������- �K����� +�������� +�� %�� �������� ���
���%��	�
	�� �

���� %�� ������	 �

� 0�	�%��� 
����	�� �� ��	 �� %�� )"� ������.
�
 �
� ��		�%��� �����
������ ���� �� %��������� 

� %�� '�1 ����� ;��� ����	�.
;��� ��;�� ���� %�� ������� �	 �

����� ������ ���� �
� ������ ��

������ ���� ����
�

��

	� %���� %�� )"� 
����� 
�
�� �	�

� ���� * �
�;���	�������� * %��� ��

!!�



!!! �� ���������������������� ��������

��
���	�%� ;��� %�� ������� �
� ����	��E�� ���� �3����������. %�� ������%��� �
�
�������. %�� ���� �
� 
����	� ��� ���%��	�
	�� �

���� �
� ��

� ���� �	 ��%���
�GL�� ;����� ���� �
�;���	�������� %���� +��
���M
!��� �� ����� �
� �� ,�+������	 �����		��- �
� %�� ��*)"� ������� ���� %��;������
%�� +����
� +���� ���� +������ ��� �����

� ��� �

� �� ����� ��
���� ������	 ������
�� ��� +�������� �� �����	�%� %����� ��� ��;��%�� �
� %�� ������� �� ���� �����
0� �
� * ��� %��� ��
		��� * ;��� �� ���� I���*J�����
-	 

� �� +����� N(����	.
+��
���MO )��. ;G� �
������� ����� ������ �� ���� �
�
�� ��������	�� ;����� ��
��
���	�%� ��;��%��� �� �� %��� �
� "
����� ;�� %�� �3����������� ���� �
� ��
������%� %�+ �
� %��;����� ����
� ;��� 
�	 ���� �����
��+��� ����
�� �
�� ��
��+������� ��������� �
� ��� ;��� ��� +��;����� �

������ �+����� ������	 %��
	�%������� 0� ������ %�++�� 0����.  �+
	��

�. ���G�. ��
	����. ��+���. ��/. 0���.
����.  
��
 �� �	%�� �� 
��� I���*J�����
-	 �
� �� �
����� ���%��	�%� ���%
���
.

�
�� �	�

� ���� ��� +��;����� ������� ����I*����J������. �

��� ��	��		��	
���� ��������. ��	�����	
���	. �
���K��� ��E������
���	 �� 
����� ���� ����� ������
����������� �����������. ���������	 
����		��� ������ ��� <��	��. �����
��+����.
+���. <��. �������� �� 
��� 
����� ;
��� �

� �� %�� ;�
� �� ��� �����
 ���� %�+��
�

�+�� 

�	������� ��� �� ��� �� 	�������� ������ ��� %�� ��2 �� �� ��������
�%�
+����� ���� �����;���	���� %�++�� ��

�� =����� %�� �
	 %�� �3����������� ����
+������ �+����� �� �
	 �� ��;�� �
� %�� ������� ����� ;���� 	������� ������� ����.
�
��. )
���. $�����*(
�.  �+
	��

�. '�%�. (�%
���	. '�� �� ����� +��
��� ����
������ +����
� �� �� ����� 	
���������M
��� ����	���+

� * �� ����;�. %�� ����;
������. �
��� %�� ���	����� %�������	 +�� ��
;����� ;� �� �� �
� +����� �� ������ ����� ���� �
� 	����. ��� ��������	 +
++�����
�� 
� ��� ������+
��. �

� �G�� �����
��� ����� ��� ��++��. ������
 �� �
��
 ����
��� ������ %�++�� �� �� 
������� �
����
' %
� ���� �������	 �%
� ��	� �%�	� �� 0�	�%���� ����. �� �
�� �%�/ 
�� ��� ��	�
�������	. +�� ���� �%
� �%
�� �%�/ 
�� ������	� �%� N�
��� #����O ����. ������
�� "������ ��� �� /�� %
� 
 �
�� ���
�� �� �� 
	 
 ���	��� �� ������ ���/ %
��
�� "�����. +�� �%��� �
	 
��
/	 ���� ��� 
 ,+��� 	����
�- * 
�� ' %��� �� ���� <��
������������	 ��� ���� +��� 	����
�	 �� �%� ������� �
���� 
�� ���
-	 ������ �
	
�%� <�	� ���	��� "�����P �%��� 
�� �%/ ���� �� ���� �� �%� ������Q �� 
�� �� /��∗�
������� "
 @��	���� �		�������� �-�	� �
	 �
�� ����� �� �
 �
���. �
�
�%�. 1�
�R�
�	.
���
�	. ��  �G����	. �
�	 ����S�� ����� �� �
 �
R��� ���� �� �����
�	 �� ��������� ����
��� 
����G� �����	 ����� ��������� T
 "������
������� �;
��� ��U;�
 	����
G� ���G	 �
� ���
����. 	;�;���� � U;/�;����� �
� �/�
=
�	;� +R��R� �
� ��;�R��;�/ ;
 ���	���/�
��� �����l� ��;/�R���� ��;�; #��+��. ���� �
�
	;� ���;��/ ����;
	 �
	;�� ��	��
�
������ � Poluqa� ot teb� samye luqxie viski, vodku i tekilu, ty i Sveta
tak�e prinesli mne horoxu� dru�bu i vernyh druzeĭ.
������ � Opredelenno, qto v buduwem, krome maxinostroeni� ty naĭdex�
seb� i v filosofii, i v po�zii, i v literature. Vot poqemu s toboĭ vsergda
qertovski pri�tno vypit� piva I���

����J�
����� �  � �� 
�����
	Q N�� ������O * ����� ����	 ��	 0	�
V����	 	� �������Q �����.
��
 �����;
 �G
	 / ��	 �
��	 
 �
	
M
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������� �
����
�� � ���� * #%� ���	
�
 ����		��� �		��� ��
 +���
 ���+��
;����Q
#%� ���	
�
 �%� �� '�
��
�� � �� 2�
���	� ����		��� ��	�
��
�� �� ��	TL +�� �
������Q
0� �
� �� 
������ �� "������ '	
+��. �����. �%
�%. �
�� I!
������J. 1�������
G�� * ;��� +��
����� * �� ���%���� (�. &��	. �
��K��. �
��� ;����� ������ �
	 %��
�3����������� ���� �
� �� �� "����� %�+ ��

� 
���� �� ��� ����� �����M
0� �
� �
�������� ���� �� ��������  ����
 �����	. ���

����. "�E�. 1�����
�.
$���+����. #��	������. �����  �+���. 2��
�. ��	��
���. �����. �
���	��	.
&
�������. �
�G��. �������. $���	�% * ������ ��	���
��� �	 ����	+

� ����	�M
)� ���� ���� �

� 0�	�%���� �� �
�
 %
������ ����� �
�����. $����. 0���. (

�.
#�����	. �
���� 0�� 

��
� �	 
���
���� I��		�%��� ��� �� ����-	���QJ. ���� �������
��� 0�	�%��� �� +��		���	� ��	
���������	� %�� %
������� �	 �
��;�� ������ 
����� ���
������
�� ���	�
������ +�;�%��� ����	�M
�T�%T� * �
� �
��� ����� �� �� �����
-	� 0� �
��� * ������ * �� ���� ���	���
���� �� ��� "����� ���� ��
�. ������ �� ��� ����� +����� �� ��� 
� �� �
����� �
�
�
� ���� �+����� �	 �� �
���� 

� ��� +��;������ ���� ��������� ������. ����� ��
�
��	�
. +���� ���%
�� �� $���
. ;�	�� �
��K���� �� (�%
�� (����� ������	�%
� �	 ���
������ 	���� ���� ��� ����	� �� �� �

�	�� �
��� �
� ���� ���������
'� +�� +��� �
� %�� �� ����� �	 �� ��� 

� %�� ����� �� +������ �����/+
�����  ����
��� �� ���� �� ���� ���	�
����. �

� 
�	 �� ��
� �� �� �������� ���� ;� ���� ;���

�	 �� &
��� �	. �
� %

� �� ���% 
�� !����/+
����	 �� �����/+
�	���	� +��
���M
'� %�+ %�� ���� ��� ������ %����� �� ���� ����	�
 �

� ��	���%

� �� ������P ��
����+
�� * �� ��� ������ ����� ���� ���� ���� +��+����� ���� 
���;�%��� �� ��
�

�	�� ������� �
� ���� �������� �	 ��%��� ;���� ��� ��D����� �
� �� %������%���
���;��� �� ���	�
���� ��� �� ���� �� �
��� %��� +��  �$ ������ %�+� �� +�	��
��	�%������ %����
� �	 ;����� ����� ,������	����. �� ������-�
���. ������. �
����� �� �
�%��	 * ������ ;��� ��� 	���� ������ �
����� ���� ���� ��
��� ������� �
�
����	. ��� �� �
� 
��� 	���		 �� ���� ��� �� �� �� �

�	�� ���� �� ���
�
. ;��� ���� ��� ����	+

� I����	�JM
��	 �

�	��� ��� �������

�������� +��� �
� 	����. �

��
� �� �� ��		�%��� ���� 
�����
;� +���	� +�� ����	�. �

� ������ ;���� �� �� �

�	�� ������� ���� �
�. �
�.
+��
��� ���� ������ 	���� �� %�� ���������� �
� ������ 
����� �� �� �%
� %�++���

0�	�%���. ����� 4556
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